• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancing visual cortical plasticity in mice by enriching their environment: a combined imaging and behavioural study

Kalogeraki, Evgenia 15 February 2016 (has links)
No description available.
2

Impact of stroke and enriched environment on visual cortical plasticity in mice and therapeutic interventions for rehabilitation

Greifzu, Franziska 19 April 2013 (has links)
No description available.
3

The role of postsynaptic density (PSD) proteins PSD-95 and PSD-93 for mouse visual cortical plasticity and vision

Stodieck, Sophia Katharina 26 September 2016 (has links)
No description available.
4

Overexpression of Serum Response Factor in Astrocytes Improves Neuronal Plasticity in a Model of Fetal Alcohol Spectrum Disorders

Paul, Arco P. 04 April 2012 (has links)
Neuronal plasticity deficits underlie many of the neurobehavioral problems seen in Fetal Alcohol Spectrum Disorders (FASD). Recently, we showed that third trimester alcohol exposure lead to a persistent disruption in ocular dominance (OD) plasticity. For instance, few days of monocular deprivation results in a robust reduction of cortical regions responsive to the deprived eye in normal animals, but not in ferrets exposed early to alcohol. This plasticity deficit can be reversed if alcohol-exposed animals are treated with a phosphodiesterase type 1 (PDE1) inhibitor during the period of monocular deprivation. PDE1 inhibition can increase cAMP and cGMP levels, activating transcription factors such as the cAMP response element binding protein (CREB) and the Serum response factor (SRF). SRF is important for many plasticity processes such as LTP, LTD, spine motility and axonal pathfinding. Here we attempt to rescue OD plasticity in alcohol-treated ferrets using a Sindbis viral vector to express a constitutively active form of SRF during the period of monocular deprivation. Using optical imaging of intrinsic signals and single unit recordings we observed that overexpression of a constitutively active form of SRF (Sindbis SRF+), but neither its dominant negative (SRF-) nor GFP, restored OD plasticity in alcohol-treated animals. Surprisingly, this restoration was observed throughout the extent of the primary visual cortex and most cells infected by the virus were positive for GFAP rather than NeuN. Hence, we further tested whether overexpression of SRF exclusively in astrocytes is sufficient to restore OD plasticity in alcohol-exposed ferrets. To accomplish that, first we exposed cultured astrocytes to the SRF+, SRF- or control GFP viruses. After 24h, these astrocytes were implanted in the visual cortex of alcohol-exposed animals or saline controls one day before MD. Optical imaging of intrinsic signals showed that alcohol-exposed animals that were implanted with astrocytes expressing SRF, but not SRF- or GFP, showed robust restoration of OD plasticity in all visual cortex. These findings suggest that overexpression of SRF exclusively in astrocytes can improve neuronal plasticity in FASD.
5

Mécanismes cellulaires et moléculaires impliqués dans le développement des synapses GABAergiques périsomatiques et dans la plasticité corticale : rôle de l’activité neuronale et de proBDNF/p75NTR

Baho, Elie 06 1900 (has links)
Dans le cortex visuel des mammifères, une cellule à panier (BC) qui représente un sous-type majoritaire d’interneurones GABAergiques, innerve une centaine de neurones par une multitude de synapses localisées sur le soma et sur les dendrites proximales de chacune de ses cibles. De plus, ces cellules sont importantes pour la génération des rythmes gammas, qui régulent de nombreuses fonctions cognitives, et pour la régulation de la plasticité corticale. Bien que la fonction des BC au sein des réseaux corticaux est à l'étude, les mécanismes qui contrôlent le développement de leur arborisation complexe ainsi que de leurs nombreux contacts synaptiques n’ont pas été entièrement déterminés. En utilisant les récepteurs allatostatines couplés aux protéines G de la drosophile (AlstR), nous démontrons in vitro que la réduction de l'excitation ainsi que la réduction de la libération des neurotransmetteurs par les BCs corticales individuelles des souris, diminuent le nombre de cellules innervées sans modifier le patron d'innervation périsomatique, durant et après la phase de prolifération des synapses périsomatiques. Inversement, lors de la suppression complète de la libération des neurotransmetteurs par les BCs individuelles avec l’utilisation de la chaîne légère de la toxine tétanus, nous observons des effets contraires selon le stade de développement. Les BCs exprimant TeNT-Lc pendant la phase de prolifération sont caractérisées par des arborisations axonales plus denses et un nombre accru de petits boutons homogènes autour des somas innervés. Toutefois, les cellules transfectées avec TeNT-Lc après la phase de la prolifération forment une innervation périsomatique avec moins de branchements terminaux d’axones et un nombre réduit de boutons avec une taille irrégulière autour des somas innervés. Nos résultats révèlent le rôle spécifique des niveaux de l’activité neuronale et de la neurotransmission dans l'établissement du territoire synaptique des cellules GABAergiques corticaux. Le facteur neurotrophique dérivé du cerveau (BDNF) est un modulateur puissant de la maturation activité-dépendante des synapses GABAergiques. Grâce à l'activation et à la signalisation de son récepteur tyrosine kinase B (TrkB), la liaison de mBDNF module fortement la prolifération des synapses périsomatiques GABAergiques formés par les BCs. Par contre, le rôle du récepteur neurotrophique de faible affinité, p75NTR, dans le développement du territoire synaptique des cellules reste encore inconnu. Dans ce projet, nous démontrons que la suppression de p75NTR au niveau des BCs individuelles in vitro provenant de souris p75NTRlox induit la formation d'une innervation périsomatique exubérante. BDNF est synthétisé sous une forme précurseur, proBDNF, qui est par la suite clivée par des enzymes, y compris la plasmine activée par tPA, pour produire une forme mature de BDNF (m)BDNF. mBDNF et proBDNF se lient avec une forte affinité à TrkB et p75NTR, respectivement. Nos résultats démontrent qu’un traitement des cultures organotypiques avec la forme résistante au clivage de proBDNF (mut-proBDNF) réduit fortement le territoire synaptique des BCs. Les cultures traitées avec le peptide PPACK, qui inactive tPA, ou avec tPA altèrent et favorisent respectivement la maturation de l’innervation synaptique des BCs. Nous démontrons aussi que l’innervation exubérante formée par les BCs p75NTR-/- n’est pas affectée par un traitement avec mut-proBDNF. L’ensemble de ces résultats suggère que l'activation de p75NTR via proBDNF régule négativement le territoire synaptique des BCs corticaux. Nous avons ensuite examiné si mut-proBDNF affecte l’innervation périsomatique formée par les BCs in vivo, chez la souris adulte. Nous avons constaté que les boutons GABAergiques périsomatiques sont significativement diminués dans le cortex infusé avec mut-proBDNF par rapport à l’hémisphère non-infusé ou traité avec de la saline. En outre, la plasticité de la dominance oculaire (OD) est rétablie par ce traitement chez la souris adulte. Enfin, en utilisant des souris qui ne possèdent pas le récepteur p75NTR dans leurs BCs spécifiquement, nous avons démontré que l'activation de p75NTR via proBDNF est nécessaire pour induire la plasticité de la OD chez les souris adultes. L’ensemble de ces résultats démontre un rôle critique de l'activation de p75NTR dans la régulation et le maintien de la connectivité des circuits GABAergiques, qui commencent lors du développement postnatal précoce jusqu’à l'âge adulte. De plus, nous suggérons que l'activation contrôlée de p75NTR pourrait être un outil utile pour restaurer la plasticité dans le cortex adulte. / Cortical GABAergic basket cells (BC) innervate hundreds of postsynaptic targets with synapses clustered around the soma and proximal dendrites. They are important for gamma oscillation generation, which in turn regulate many cognitive functions, and for the regulation of developmental cortical plasticity. Although the function of BC within cortical networks is being explored, the mechanisms that control the development of their extensive arborisation and synaptic contacts have not been entirely resolved. By using the Drosophila allatostatin G-protein-coupled receptors (AlstR), we show that reducing excitation, and thus neurotransmitter release, in mouse cortical single BC in slice cultures decreases the number of innervated cells without changing the pattern of perisomatic innervation, both at the peak and after the proliferation phase of perisomatic synapse formation. Conversely, suppressing neurotransmitter release in single BCs by using the tetanus toxin light-chain can have completely opposite effects depending on the developmental stage. Basket cells expressing TeNT-Lc during the peak of the proliferation were characterized by denser axonal arbors and an increased number of smaller, homogenous boutons around the innervated somatas compared with control cells. However, after the peak of the synapse proliferation, TeNT-Lc transfected BCs formed perisomatic innervation with fewer terminal axon branches and fewer irregular-sized boutons around innervated somatas. Our results reveal a remarkably specific and age-dependent role of neural activity and neurotransmission levels in the establishment of the synaptic territory of cortical GABAergic cells. Brain derived neurotrophic factor (BDNF) has been shown to be a strong modulator of activity-dependent-maturation of GABAergic synapses. Through the activation and signaling of their receptor Tropomyosin-related kinase B (TrkB), mBDNF binding strongly modulates the proliferation of GABAergic perisomatic synapses formed by BCs. Whether the low-affinity neurotrophin-receptor p75NTR also play a role in the development of basket cell synaptic territory is unknown. Here, we show that single-cell deletion of p75NTR in BCs in cortical organotypic cultures from p75NTRlox mice induce the formation of exuberant perisomatic innervations by the mutant basket cells, in a cell-autonomous fashion. BDNF is synthesized as a precursor, proBDNF, which is cleaved by enzymes, including tPA-activated plasmin, to produce mature (m)BDNF. mBDNF and proBDNF bind with high-affinity to TrkB and p75NTR, respectively. Our results show that treating organotypic cultures with cleavage-resistant proBDNF (mut-proBDNF) strongly reduces the synaptic territory of BCs. Treating cultures with the tPA-inactivating peptide PPACK or with tPA impairs and promotes the maturation of BC synaptic innervations, respectively. We further show that the exuberant innervations formed by p75NTR-/- basket cells are not affected by mut-proBDNF treatment. All together, these results suggest that proBDNF-mediated p75NTR activation negatively regulates the synaptic territory of BCs. We next examined if mut-proBDNF affects perisomatic innervation formed by BCs in vivo, in the adult mouse. We found that perisomatic GABAergic boutons are significantly decreased in the cortex infused with mut-proBDNF as compared to non-infused or saline-treated hemispheres. Further, ocular dominance (OD) plasticity is restored by this treatment in adult mice. Finally, we found that proBDNF-mediated activation of p75NTR is necessary to induce OD plasticity in the adult mice, by using mice that lack p75NTR specifically in BCs. All together, these results demonstrate a critical role of p75NTR activation in regulating and maintaining GABAeric circuit connectivity from early postnatal development to adulthood. Further, we suggest that controlled activation of p75NTR could be a useful tool to restore plasticity in adult cortex.

Page generated in 0.0973 seconds