• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational Bayesian techniques applied to cosmology

Hee, Sonke January 2018 (has links)
This thesis presents work around 3 themes: dark energy, gravitational waves and Bayesian inference. Both dark energy and gravitational wave physics are not yet well constrained. They present interesting challenges for Bayesian inference, which attempts to quantify our knowledge of the universe given our astrophysical data. A dark energy equation of state reconstruction analysis finds that the data favours the vacuum dark energy equation of state $w {=} -1$ model. Deviations from vacuum dark energy are shown to favour the super-negative ‘phantom’ dark energy regime of $w {< } -1$, but at low statistical significance. The constraining power of various datasets is quantified, finding that data constraints peak around redshift $z = 0.2$ due to baryonic acoustic oscillation and supernovae data constraints, whilst cosmic microwave background radiation and Lyman-$\alpha$ forest constraints are less significant. Specific models with a conformal time symmetry in the Friedmann equation and with an additional dark energy component are tested and shown to be competitive to the vacuum dark energy model by Bayesian model selection analysis: that they are not ruled out is believed to be largely due to poor data quality for deciding between existing models. Recent detections of gravitational waves by the LIGO collaboration enable the first gravitational wave tests of general relativity. An existing test in the literature is used and sped up significantly by a novel method developed in this thesis. The test computes posterior odds ratios, and the new method is shown to compute these accurately and efficiently. Compared to computing evidences, the method presented provides an approximate 100 times reduction in the number of likelihood calculations required to compute evidences at a given accuracy. Further testing may identify a significant advance in Bayesian model selection using nested sampling, as the method is completely general and straightforward to implement. We note that efficiency gains are not guaranteed and may be problem specific: further research is needed.

Page generated in 0.0801 seconds