• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth, Characterization and Simulation of InAs Quantum Wires on Vicinal Substrates

Scullion, Andrew 04 1900 (has links)
<p>The heteroepitaxial growth of InAs self-assembled quantum wires on vicinal substrates is investigated. InGaAlAs lattice-matched to InP was first deposited onto an InP(001) substrate with and without a 0.9 degree off-cut toward the (110) direction, followed by the deposition of a strained layer of InAs. Dense InAs quantum wires were successfully grown on both nominally flat and vicinal substrates in order to observe the effect of the presence of atomic steps. The off-cut angle was chosen based on the wire spacing on a flat substrate to serve as a template for their nucleation and improve their size distribution for use as 1.55 um wavelength lasers required by the telecommunications industry. The results have shown a modest but statistically significant improvement in the width of their size distribution. In addition, a kinetic Monte Carlo simulation including full strain calculations was developed to further understand the nucleation process. The model developed here disproves the idea that InAs quantum wires are aligned towards the (-110) direction due to diffusion anisotropy. The simulation of the formation of quantum wires similar to those observed experimentally has been achieved and the Stranski-Krastanow growth mode is demonstrated.</p> / Master of Materials Science and Engineering (MMatSE)

Page generated in 0.024 seconds