• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A hydraulic test stand for demonstrating the operation of Eaton’s energy recovery system (ERS)

Wang, Meng (Rachel), Danzl, Per, Mahulkar, Vishal, Piyabongkarn, Damrongrit (Neng), Brenner, Paul 27 April 2016 (has links) (PDF)
Fuel cost represents a significant operating expense for owners and fleet managers of hydraulic off-highway vehicles. Further, the upcoming Tier IV compliance for off-highway applications will create further expense for after-treatment and cooling. Solutions that help address these factors motivate fleet operators to consider and pursue more fuelefficient hydraulic energy recovery systems. Electrical hybridization schemes are typically complex, expensive, and often do not satisfy customer payback expectations. This paper presents a hydraulic energy recovery architecture to realize energy recovery and utilization through a hydraulic hydro-mechanical transformer. The proposed system can significantly reduce hydraulic metering losses and recover energy from multiple services. The transformer enables recovered energy to be stored in a high-pressure accumulator, maximizing energy density. It can also provide system power management, potentially allowing for engine downsizing. A hydraulic test stand is used in the development of the transformer system. The test stand is easily adaptable to simulate transformer operations on an excavator by enabling selected mode valves. The transformer’s basic operations include shaft speed control, pressure transformation control, and output flow control. This paper presents the test results of the transformer’s basic operations on the test stand, which will enable a transformer’s full function on an excavator.
2

Utah Off-Highway Vehicle Owners' Specialization and Its Relationship to Environmental Attitudes and Motivations

Smith, Jordan W 01 December 2008 (has links)
Off-Highway Vehicle (OHV) use has grown enormously on Utah’s public lands and is one of the most contentious and difficult issues for federal, state, and local land management agencies to address and provide for. Despite OHV use’s meteoric rise in popularity and its ongoing public conflicts, little is known about OHV recreationists. This thesis develops a typology that identifies within-activity differences related to recreation specialization; it also determines differences in OHV owners’ environmental attitudes and motivations. Findings show Utah’s owners comprise a range of use along the recreation specialization continuum. Results also indicate that an OHV owners’ specialization level is not a significant determinant of either their environmental attitude or four out of the seven given motivations for participation in the activity. Specialization is, however, directly correlated to three specific motivation domains: achievement/stimulation, independence, and meeting new people. Overall, the recreation specialization framework, broadly interpreted, was successfully utilized to develop a typology of use which can inform resource management decisions.
3

A hydraulic test stand for demonstrating the operation of Eaton’s energy recovery system (ERS)

Wang, Meng (Rachel), Danzl, Per, Mahulkar, Vishal, Piyabongkarn, Damrongrit (Neng), Brenner, Paul January 2016 (has links)
Fuel cost represents a significant operating expense for owners and fleet managers of hydraulic off-highway vehicles. Further, the upcoming Tier IV compliance for off-highway applications will create further expense for after-treatment and cooling. Solutions that help address these factors motivate fleet operators to consider and pursue more fuelefficient hydraulic energy recovery systems. Electrical hybridization schemes are typically complex, expensive, and often do not satisfy customer payback expectations. This paper presents a hydraulic energy recovery architecture to realize energy recovery and utilization through a hydraulic hydro-mechanical transformer. The proposed system can significantly reduce hydraulic metering losses and recover energy from multiple services. The transformer enables recovered energy to be stored in a high-pressure accumulator, maximizing energy density. It can also provide system power management, potentially allowing for engine downsizing. A hydraulic test stand is used in the development of the transformer system. The test stand is easily adaptable to simulate transformer operations on an excavator by enabling selected mode valves. The transformer’s basic operations include shaft speed control, pressure transformation control, and output flow control. This paper presents the test results of the transformer’s basic operations on the test stand, which will enable a transformer’s full function on an excavator.
4

Occupant Response Metrics and Their Applicability to a Roll Simulator

Yoder, Steven J. 19 December 2011 (has links)
No description available.

Page generated in 0.0482 seconds