• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 159
  • 159
  • 148
  • 146
  • 143
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

The effects of environmental loading uncertainty upon the response of offshore structures

Jusoh, Iberahin January 1996 (has links)
No description available.
122

From maldistribution to mass transfer in a tilted packed column

Tanner, Richard Kevin January 1996 (has links)
No description available.
123

On the dynamics of low tension marine cables

Pinto, Waldir Terra January 1995 (has links)
This thesis is concerned with the dynamics of low tension marine cables. These cables are widely used in the ocean environment for signal and power transmission applications. There are two main issues in the dynamic analysis of such cables. When the tension is zero, which is often the situation encountered at the seabed during cable laying, the cable geometric stiffness matrix becomes singular. The other issue is that the transformation from local co-ordinates to global co-ordinates made through Euler angles leads to a greater number of unknowns than the number of differential equations. The former problem can be overcome by taking into account the flexural rigidity of the cable. The latter problem can be overcome by assuming that one of the Euler angles is known. However, this procedure can introduce singularities on the formulation of the problem. A new three dimensional model for the dynamics of marine cables is presented in this thesis. The model takes into account the bending stiffness of the cable in order to overcome singularities in the geometric stiffness matrix. In order to overcome the problem owing to the use of Euler angles, a new displacement approach is introduced. This new displacement approach uses the differential geometry definition of curvature and torsion in order to establish the transformation from the local co-ordinates to the global co-ordinates. The general formulation of the dynamics of marine cables presented in this thesis is applicable to a wide range of cases such as towed cables, cable installation and cable recovery. In order to illustrate this new formulation the cases of towed cables and cable installation are investigated in the some detail. Solutions for the differential equations of motion are presented for two and three dimensions. The two dimensional solution is obtained through a finite element based technique which uses a weak Galerkin formulation for integration in space and the Newmark method for integration in time. The model's results are compared with full scale measurements. Simulations of the dynamic response of marine cables to vessel wave induced motions and vessel changes in speed are also presented. The three dimensional solution is obtained by expressing the equations of motion as functions of the Euler angles. The space integration is also performed by a finite element model but it uses a finite difference scheme for the time integration. This solution is then used to study the influence of sheared cross-currents in the cable's configuration. Finally, conclusions and suggestions for further research are presented.
124

A three dimensional analysis of the motion of a rigid ship in waves

Inglis, R. B. January 1980 (has links)
No description available.
125

Wave loading on offshore structures : A probabilistic approach

Burrows, R. January 1982 (has links)
No description available.
126

Vibrational modal analysis of rotating machines

Mahdi, Hassan Hamoodi January 1991 (has links)
No description available.
127

Long term behaviour of FRP structural foam cored sandwich beams

Clark, Simon Daniel January 1997 (has links)
No description available.
128

The effect of weather, particularly short sea waves, on ship speed performance

Kwon, Young-Joong January 1981 (has links)
A survey of literature concerning methods of predicting the effect of weather on ship speed performance at sea has been made covering the following topics: - - Added resistance due to regular waves, - Wave diffraction, - Wave drift force, - Added resistance due to irregular waves, - Added resistance due to wind, - Wind and wave conditions at sea, - Involuntary speed loss and power increase for a given added resistance, - Effect of rough weather on ship speed performance. The survey revealed that it is difficult to determine numerically the speed loss and power increase due to inclement lather. A principal reason for this is that none of the existing theoretical methods available for determining the added wave resistance are convincingly accurate, in particular over the range of wavelengths which are short compared to the length of a ship. An approximate method for calculating added resistance due to regular wave reflection has been established by the Author. The basic steps of the method are as follows: - (1) To find a mathematical model of a ship by making use of the NAG subroutine based on a minimax polynomial fit method. (2) To evaluate the wave drift force due to very, short waves(i. e. When it may be assumed that the incident wave potential is the same as the potential due to body disturbance) for a vertical axis cylindrical body having infinite draught, and for which the waterline shape is the same as the actual ship, using the mathematical formula obtained at 1(1)1 and Bessho's formula. (3) To correct the result of '(2)' with a correction factor for the effect of wave scattering, based on the wave scattering coefficient derived by Jones et al. using ideas developed in the shady of geometrical optics. (4) To correct the result of '(3)' for the effect of finite draught considering the orbital motions of water particles. (5) To correct the result of '(4)' for the effect of forward speed with the correction factor given by Fujii-Takahashi but modified for the case of oblique waves by the Author. In order to confirm the applicability of this method, an experimental work was carried out by the Author using a Series 60 model with oscillations in the 6-degrees of freedom restricted. Particular attention was paid to the case of the shorter wavelength range where the effect of wave reflection is dominant cared to the effects of the ship's motions (Wave steepness = 10.6 ~ 101.0, A/L = 0.23 ~ 1.18, Fn = 0.10 ~ 0.25). When comparing the measured and the computed resistance due to wave, reflection in a head sea, good agreement is shown. To modify the results of most conventional methods for added resistance due to regular waves, it is assumed that the total resistance increase of a ship in regular waves can be approximated by the sum of the resistance due to wave reflection and the resistance due to the ship's motions. Modifications of results determined by Gerritsma's method and by Maruo's method were made using the Author's routine. The modified results were compared with results using Fujii-Takahashi 's method, that of Gerritsma, and that of Maruo as well as with some experimental data measured by Strom-Tejsen et al., van Sluijs et al., Loukakis, Shintani, and Fujii et al. for Series 60 and tanker forms in head and oblique regular waves. Fran the comparisons, the Author concludes that his method of determining added resistance due to regular waves provides a good approximation for practical purposes, bearing in mind, however, that an increased error may be found with longer wavelengths and higher speeds in the range Fn > 0.25. Using the Author's method and the linear superpositiari technique, added resistance due to irregular waves was calculated for a Series 60 model in several experimental spectra used by Sibul. The computed results were compared with the model data measured by Sibul in irregular waves. The comparison reveals that the results of the Author's method agree well with the measured data. A comparison was made by the Author to find differences between the results of added wind resistance calculated using methods due to Isherwood, van Berlekan, Aage, Wilson et al., Tsuji et al., Wagner, Gould, and Shearer et al.. The mean difference between the results of Isherwood's method and the others quoted above was 7% for a given relative wind speed for a tanker in head winds where the added wind resistance may be larger than that for oblique winds. Using the following routines :- - the Author's for added wave resistance, - van Berlekan's for wind resistance, - van Berlekan's for speed loss and power increase due to a given added resistance. and using the I. T. T. C. standard spectrum and particular sea conditions, various effects of weather on ship speed performance at sea were investigated. The following topics were covered: - - Effect of weather intensity and ship type on added wave resistance (Tanker, Containership), and comparison of the result with full scale data (Tanker). - Caparison of the result of the Author's method with those based on experimental data for the thrust increase due to waves (Tanker). - Effect of ship size, ship type, and weather intensity on the ratio of added wave resistance to the total added resistance (Tanker, Containership, Passenger liner). - Comparison of the results of the Author's method with full scale data for speed loss (Ore carrier). - Effects of ship speed and draught on power increase in certain cases (Tanker). - Effect of weather intensity on the additional energy expenditure per nautical mile (Tanker). - Comparison of the result of van Berlekan's formula for speed loss due to a given added resistance with the result of Townsin's empirical foi hula based on full scale data (Tanker). - Establishing approximate formulae (the Townsin/Kwon formulae) for speed loss due to the effect of head wind and waves (Tanker, Container-ship). - Comparison of the relative effects of weather and hull roughness on power increase and speed loss (Tanker). To conclude, the Author considers that the thesis provides an improved understanding of the effect of weather on ship speed performance, particularly in short sea waves. The Author expects that his work will facilitate the following: - Analysis of sea trial data. - Improved estimation of service power margins. - Accurate determination of optimum speed for fuel economy etc.. This thesis is based on research done by the Author as a member of the Ship Performance Group in the Department of Naval Architecture and Shipbuilding of the University of Newcastle-upon-Tyne in England, under the supervision of Dr. R. L. Townsin.
129

Safety of ships with particular reference to grounding

Panunggal, Petrus Eko January 1993 (has links)
No description available.
130

Reliability based design of marine risers

Cortes Romero, Juan Jose January 1999 (has links)
The harsh environment in which offshore structures must operate, their intended service life and the uncertainties inherent to the load processes, have been the impulse for investigation of their reliability. The method most extensively applied for this purpose during the last two decades was the Structural Systems Reliability, which can not be coupled with the finite element method. Therefore the objectives of the present work are to investigate the applicability of a technique which allows the utilization of the reliability analysis methods with a marine riser modelled by the finite element method, FEM, and revision of the reliability levels associated with this riser, including the fatigue life. For these purposes the response surface methodology was selected, among a number of methods. A response surface approach which requires a low number of experiments with the FEM model was elected, calculations for construction of the response surface are further simplified by the assumption of statistical independence among the basic variables. It is demonstrated in the present study that the response surface is capable of producing an equivalent and explicit limit state function which is used at a second stage with the First Order Reliability Method and the Adaptive Importance Sampling simulation technique. However, it was found that the assumption of independence is not always valid. In this case, a method is proposed in which the correlated variables are implicitly considered at the level of the mechanical model. The reliability of the marine riser was reviewed with the proposed algorithms, finding that the validity of the reliability levels depend on the number of basic variables considered and their statistical properties. The significant reduction in required computing time achieved with the response surface methodology allowed parametric studies to be carried out, in order to investigate the impact of different statistical properties of the basic variables. The fatigue reliability case was also investigated with the S-N approach. The introduction of uncertainty in the fatigue life estimation proved that acceptable levels of deterministic fatigue life may render unacceptablelevels of reliability. The uncertainty associated with the stress range is the most significant variable, though the present fatigue reliability formats consider it in a very simplified manner, therefore an approach is suggested with which the stress uncertainty can be considered in a more detailed fashion. However, the algorithm used here for construction of the response surface was unable to produce the required surface. Therefore it is concluded that though the response surface is capable of handling a large number of structural reliability cases, there are instances in which more research efforts are needed.

Page generated in 0.0599 seconds