• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 16
  • 16
  • 12
  • 12
  • 12
  • 10
  • 10
  • 10
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical and numerical modelling of offshore foundations under combined loads

Martin, Christopher Michael January 1994 (has links)
In addition to vertical loads, the foundations of offshore structures are subjected to horizontal loads and overturning moments as a result of environmental (wind and wave) loading. The behaviour of circular footings on cohesive soil under conditions of combined vertical, horizontal and moment (V, H, M) loading is the primary concern of this thesis. A programme of physical model tests, involving combined loading of circular footings on reconstituted Speswhite kaolin, is reported. The shape of footing used is typical of the "spudcan" foundations of independent leg jack-up drilling platforms. Previous experience with combined loading of footings on sand has revealed that the observed load:displacement behaviour is best understood, and theoretically modelled, in terms of work hardening plasticity theory. The present tests on clay confirm this, and the results are interpreted to give empirical expressions for (i) the combined load yield surface in V:H:M space, and (ii) a suitable flow rule to allow prediction of the corresponding footing displacements (z, h, θ) during yielding. Extension to a complete plasticity model is achieved using theoretical stiffness factors to define elastic behaviour, and theoretical lower bound bearing capacity factors (derived specifically for this work) to define the size of the yield surface as a function of vertical penetration. The predictive capabilities of the numerical model are evaluated by retrospective simulation of various footing tests. Finally some plane frame structural analyses of a representative jack-up unit are described; some of these analyses incorporate the plasticity-based numerical model of spudcan footing behaviour under combined loads.
2

Static pile-soil-pile interaction in offshore pile groups

Chaudhry, Anjum Rashid January 1994 (has links)
This thesis is a theoretical study, using both finite element and boundary element methods, of the behaviour of single-piles and pile groups under vertical and lateral loading. It offers an improved understanding of the soil-structure interaction that occurs in pile groups, particularly closely spaced piles subjected to lateral loads. The potential of a two- dimensional idealisation of what is a three-dimensional problem is demonstrated by achieving real insight into the complex nature of pile-soil and pile-soil-pile interaction in pile groups. A new load transfer mechanism is presented for a rigid, axially loaded vertical pile. From this an improvement is then derived to the analytical solution for pile head settlement given by Randolph and Wroth (1978). The improved mechanism has the further merit that it can be applied also to solutions for flexible piles and pile groups. The improved analytical solution is further adapted in the development of two correcting layers specifically for vertically loaded piles to model infinite boundaries in the finite element model. The correcting layers help in establishing superiority of the finite element method over the boundary element method. To model pile-soil interaction, a purely cohesive interface element is developed and then validated by performing various two-dimensional test problems, including stability analysis of flat surface footings. Footing-soil interface tension is successfully modelled in this way - an outcome that entails a significant modification to the Hansen (1970) bearing capacity solution. Stability analysis is also carried out of conical footings using a three-dimensional finite element model: the results help to explain the applicability of the existing bearing capacity theories to conical footings. The ultimate lateral soil reaction is determined and various pile loading stages are investigated through parametric studies. Study of the stage immediately following pile installation (i.e. the consolidation stage) highlights the need to develop an effective stress analysis for laterally loaded piles. Pile-soil interaction is studied using the cohesive interface element presented earlier, which proves to be quite successful in smoothing out the stress discontinuities around the pile. A new material model for frictional soils is presented, and validated by using it to model an extension test: it captures well post-peak behaviour and takes care of the effects of dilation on the response of laterally loaded piles. Finally, mechanisms of interaction in closely spaced pile groups are studied. Simple analytical expressions are derived which quantify the effects of interaction. A new method of analysis is presented for single-piles and pile groups which offers a considerable degree of reliability without having to do either impossibly expensive full scale field tests or prohibitively expensive full three-dimensional analysis using the currently available computers.
3

Installation of Suction Caissons in Dense Sand and the Influence of Silt and Cemented Layers

Tran, Manh Ngoc January 2006 (has links)
Doctor of Philosophy / Suction caissons have been used in the offshore industry in the last two decades as both temporary mooring anchorages and permanent foundation systems. Although there have been more than 500 suction caissons installed in various locations around the world,understanding of this concept is still limited. This thesis investigates the installation aspect of suction caissons, focusing on the installation in dense sand and layered soils, where sand is inter-bedded by silt and weakly cemented layers. The research was mainly experimental, at both normal gravity and elevated acceleration levels in a geotechnical centrifuge, with some numerical simulations to complement the experimental observations. This study firstly explored the suction caisson installation response in the laboratory at 1g. The influence and effect of different design parameters, which include caisson size and wall thickness, and operational parameters including pumping rate and the use of surcharge were investigated in dense silica sand. The sand heave inside the caisson formed during these installations was also recorded and compared between tests. The 1g study also investigated the possibility of installing suction caissons in layered sand-silt soil, where caissons were installed by both slow and rapid pumping. The heave formation in this case is also discussed. The mechanism of heave formation in dense sand and deformation of the silt layer was further investigated using a half-caisson model and the particle image velocimetry (PIV) technique. The installation response at prototype soil stress conditions was then investigated in a geotechnical centrifuge. The effects of caisson size, wall thickness, as well as surcharge were investigated in various types of sand, including silica sand, calcareous sand dredged from the North Rankin site in the North West Shelf (Australia), and mixed soil where silica sand was mixed with different contents of silica flour. Comparison with the 1g results was also made. The general trend for the suction pressure during installation in homogenous sand was identified. The installation in layered soil was also investigated in the centrifuge. The installation tests were performed in various sand-silt profiles, where the silt layers were on the surface and embedded within the sand. Comparison with the results in homogenous sand was made to explore the influence of the silt layer. Installations in calcareous sand with cemented layers were also conducted. The penetration mechanism through the cemented layer is discussed, and also compared with the penetration mechanism through the silt layer. Finite element modelling was performed to simulate key installation behaviour. In particular, it was applied to simulate the sand deformation observed in the PIV tests. The likely loosening range of the internal sand plug during suction installation in silica sand was estimated. By investigating the development of hydraulic gradient along the inner wall, the principle underlying the suction response for different combinations of selfweight and wall thickness was identified. FE modelling was also performed to explore the influence of the hydraulic blockage by the silt layer. This study found that the caissons could penetrate into all soils by suction installation. Among the key findings are the observations that the suction pressure increases with depth following a distinct pressure slope, corresponding to a critical hydraulic condition along the inner wall; and the installation was possible in both layered sand-silt and uncemented-cemented soils if sufficient pumping was available. While the caisson could penetrate the weakly cemented layers well with no notable adverse effects, problems were observed in the installation in layered sand-silt soil. These include piping failure in slow pumping rate installation at 1g, and the formation of extremely unstable soil heave during installation.
4

THREE DIMENSIONAL LIQUEFACTION ANALYSIS OF OFFSHORE FOUNDATIONS

Taiebat, Hossein Ali January 1999 (has links)
This thesis presents numerical techniques which have been developed to analyse three dimensional problems in offshore engineering. In particular, the three dimensional liquefaction analysis of offshore foundations on granular soils is the main subject of the thesis. The subject matter is broadly divided into four sections: 1)Development of an efficient method for the three dimensional elasto?plastic finite element analysis of consolidating soil through the use of a discrete Fourier representation of field quantities. 2)Validation of the three dimensional method through analyses of shallow offshore foundations subjected to three dimensional loading and investigation of the yield locus for foundations on purely cohesive soils. 3)Formulation of governing equations suitable for three dimensional liquefaction analyses of offshore foundations founded on granular soil, presentation of a method for liquefaction analyses, and application of the method in modified elastic liquefaction analyses of offshore foundations. 4)Application of a conventional elasto?plastic soil model in the liquefaction analyses of offshore foundations using the three dimensional finite element method. The finite element method developed in this thesis provides a rigorous and efficient numerical tool for the analysis of geotechnical problems subjected to three dimensional loading. The efficiency of the numerical tool makes it possible to tackle some of the problems in geotechnical engineering which would otherwise need enormous computing time and thus would be impractical. The accuracy of the numerical scheme is demonstrated by solving the bearing capacity problem of shallow foundations subjected to three dimensional loading. The generalized governing equations and the numerical method for liquefaction analyses presented in this thesis provide a solid base for the analysis of offshore foundations subjected to cyclic wave loading where they are founded on potentially liquefiable soil. The practicability of the numerical scheme is also demonstrated by a modified elastic liquefaction analysis of offshore foundations. The liquefaction phenomenon is redefined in the context of the conventional Mohr?Coulomb model, so that a relatively simple and practical model for elasto?plastic liquefaction analysis is presented. The three dimensional finite element method together with the numerical scheme for liquefaction analysis and the elasto?plastic soil model provide a suitable practical engineering tool for exploring the responses of offshore foundations subjected to cyclic wave loading.
5

THREE DIMENSIONAL LIQUEFACTION ANALYSIS OF OFFSHORE FOUNDATIONS

Taiebat, Hossein Ali January 1999 (has links)
This thesis presents numerical techniques which have been developed to analyse three dimensional problems in offshore engineering. In particular, the three dimensional liquefaction analysis of offshore foundations on granular soils is the main subject of the thesis. The subject matter is broadly divided into four sections: 1)Development of an efficient method for the three dimensional elasto?plastic finite element analysis of consolidating soil through the use of a discrete Fourier representation of field quantities. 2)Validation of the three dimensional method through analyses of shallow offshore foundations subjected to three dimensional loading and investigation of the yield locus for foundations on purely cohesive soils. 3)Formulation of governing equations suitable for three dimensional liquefaction analyses of offshore foundations founded on granular soil, presentation of a method for liquefaction analyses, and application of the method in modified elastic liquefaction analyses of offshore foundations. 4)Application of a conventional elasto?plastic soil model in the liquefaction analyses of offshore foundations using the three dimensional finite element method. The finite element method developed in this thesis provides a rigorous and efficient numerical tool for the analysis of geotechnical problems subjected to three dimensional loading. The efficiency of the numerical tool makes it possible to tackle some of the problems in geotechnical engineering which would otherwise need enormous computing time and thus would be impractical. The accuracy of the numerical scheme is demonstrated by solving the bearing capacity problem of shallow foundations subjected to three dimensional loading. The generalized governing equations and the numerical method for liquefaction analyses presented in this thesis provide a solid base for the analysis of offshore foundations subjected to cyclic wave loading where they are founded on potentially liquefiable soil. The practicability of the numerical scheme is also demonstrated by a modified elastic liquefaction analysis of offshore foundations. The liquefaction phenomenon is redefined in the context of the conventional Mohr?Coulomb model, so that a relatively simple and practical model for elasto?plastic liquefaction analysis is presented. The three dimensional finite element method together with the numerical scheme for liquefaction analysis and the elasto?plastic soil model provide a suitable practical engineering tool for exploring the responses of offshore foundations subjected to cyclic wave loading.
6

Installation of Suction Caissons in Dense Sand and the Influence of Silt and Cemented Layers

Tran, Manh Ngoc January 2006 (has links)
Doctor of Philosophy / Suction caissons have been used in the offshore industry in the last two decades as both temporary mooring anchorages and permanent foundation systems. Although there have been more than 500 suction caissons installed in various locations around the world,understanding of this concept is still limited. This thesis investigates the installation aspect of suction caissons, focusing on the installation in dense sand and layered soils, where sand is inter-bedded by silt and weakly cemented layers. The research was mainly experimental, at both normal gravity and elevated acceleration levels in a geotechnical centrifuge, with some numerical simulations to complement the experimental observations. This study firstly explored the suction caisson installation response in the laboratory at 1g. The influence and effect of different design parameters, which include caisson size and wall thickness, and operational parameters including pumping rate and the use of surcharge were investigated in dense silica sand. The sand heave inside the caisson formed during these installations was also recorded and compared between tests. The 1g study also investigated the possibility of installing suction caissons in layered sand-silt soil, where caissons were installed by both slow and rapid pumping. The heave formation in this case is also discussed. The mechanism of heave formation in dense sand and deformation of the silt layer was further investigated using a half-caisson model and the particle image velocimetry (PIV) technique. The installation response at prototype soil stress conditions was then investigated in a geotechnical centrifuge. The effects of caisson size, wall thickness, as well as surcharge were investigated in various types of sand, including silica sand, calcareous sand dredged from the North Rankin site in the North West Shelf (Australia), and mixed soil where silica sand was mixed with different contents of silica flour. Comparison with the 1g results was also made. The general trend for the suction pressure during installation in homogenous sand was identified. The installation in layered soil was also investigated in the centrifuge. The installation tests were performed in various sand-silt profiles, where the silt layers were on the surface and embedded within the sand. Comparison with the results in homogenous sand was made to explore the influence of the silt layer. Installations in calcareous sand with cemented layers were also conducted. The penetration mechanism through the cemented layer is discussed, and also compared with the penetration mechanism through the silt layer. Finite element modelling was performed to simulate key installation behaviour. In particular, it was applied to simulate the sand deformation observed in the PIV tests. The likely loosening range of the internal sand plug during suction installation in silica sand was estimated. By investigating the development of hydraulic gradient along the inner wall, the principle underlying the suction response for different combinations of selfweight and wall thickness was identified. FE modelling was also performed to explore the influence of the hydraulic blockage by the silt layer. This study found that the caissons could penetrate into all soils by suction installation. Among the key findings are the observations that the suction pressure increases with depth following a distinct pressure slope, corresponding to a critical hydraulic condition along the inner wall; and the installation was possible in both layered sand-silt and uncemented-cemented soils if sufficient pumping was available. While the caisson could penetrate the weakly cemented layers well with no notable adverse effects, problems were observed in the installation in layered sand-silt soil. These include piping failure in slow pumping rate installation at 1g, and the formation of extremely unstable soil heave during installation.
7

Non-linear analysis of jack-up structures subjected to random waves

Cassidy, Mark Jason January 1999 (has links)
There is a steadily increasing demand for the use of jack-up units in deeper water and harsher environments. Confidence in their use in these environments requires jack-up analysis techniques to reflect accurately the physical processes occurring. This thesis is concerned with the models appropriate for the dynamic assessment of jack-ups, an important issue in long-term reliability considerations. The motivation is to achieve a balanced approach in considering the non-linearities in the structure, foundations and wave loading. A work hardening plasticity model is outlined for the combined vertical, moment and horizontal loading of spudcan footings on dense sand. Empirical expressions for the yield surface in combined load space and a flow rule for prediction of footing displacements during yield are given. Theoretical lower bound bearing capacity factors for conical footings in sand have been derived and are used in a strain-hardening law to define the variation in size of the yield surface with the plastic component of vertical penetration. The complete incremental numerical model has been implemented into a plane frame analysis program named JAKUP. The spectral content of wave loading is considered using NewWave theory, and the importance of random wave histories shown by constraining the deterministic NewWave into a completely random surface elevation. Using this technique, a method for determining short-term extreme response statistics for a sea-state is demonstrated. A numerical experiment on an example jack-up and central North Sea location is shown to emphasise the difference in long-term extreme response according to various footing assumptions. The role of sea-state severity in the variation of short-term extreme response statistics is also highlighted. Finally, probabilistic methods are used to develop further understanding of the response behaviour of jack-ups. A sensitivity study of influential variables (with probabilistic formulations as opposed to deterministic values) has been conducted using the response surface methodology.
8

Development of non-linear numerical models appropriate for the analysis of jack-up units

Thompson, Richard Saint George January 1996 (has links)
Jack-up units have considerable economic significance because they are used to carry out a large proportion of the world's oil and gas exploration in water depths less than 90.0m. Due to the increase in use of jack-ups in harsher environments, analysis techniques assuming quasi-static and linear structural behaviour have had to be reassessed. This thesis is concerned with non-linear dynamic analysis methods appropriate for a jack-up assessment. Jack-up modelling requires realistic representation of the structure, the foundations and the environmental loading, together with the implementation of appropriate dynamic analysis algorithms. Techniques for each of these aspects of jack-up analysis are reviewed and the implementation of several of the methods in an advanced plane frame analysis program called JAKUP is described. Geometric non-linearity in the structure and work hardening plasticity at the foundations are accounted for in the program. Test cases are presented to verify the implementation of the methods and then some illustrative plane frame quasi-static and dynamic analyses are described. These simple models highlight the importance of accounting for dynamic motions in a jack-up analysis. For the quasi-static analyses, the assumption of pinned footing behaviour is seen to always result in the most conservative displacement and moment predictions. However, the analyses show that this is not always the case when dynamic amplification is accounted for.
9

Model testing of foundations for offshore wind turbines

Villalobos Jara, Felipe Alberto January 2006 (has links)
Suction caissons are a new foundation option for offshore wind turbines. This thesis is focussed on the behaviour of suction caisson foundations in sand and in clay during installation, and under subsequent vertical and combined moment-lateral loadings. The research is based on extensive experimental work carried out using model scaled caissons. The analysis of the results allowed the determination of parameters for hyperplasticity models. Model caissons were vertically loaded in loose and dense sands to study in service states and plastic behaviour. Bearing capacity increased with the length of the caisson skirt. The bearing capacity formulation showed that the angle of friction mobilised was close to the critical state value for loose sands and close to those of peak values due to dilation for dense sands. The vertical load increased, though at a lower rate than during initial penetration, after large plastic displacements occurred. A hardening law formulation including this observed behaviour is suggested. In sand the installation of caissons by suction showed a drastic reduction in the net vertical load required to penetrate the caisson into the ground compared with that required to install caissons by pushing. This occurred due to the hydraulic gradients created by the suction. The theoretical formulations of the yield surface and flow rule were calibrated from the results of moment loading tests under low constant vertical loads. The fact that caissons exhibit moment capacity under tension loads was considered in the yield surface formulation. Results from symmetric and non symmetric cyclic moment loading tests showed that Masing’s rules were obeyed. Fully drained conditions, partially drained and undrained conditions were studied. Caisson rotation velocities scaled in the laboratory to represent those in the field induced undrained response for relevant periods of wave loading, a wide range of seabed permeabilities and prototype caisson dimensions. Under undrained conditions and low constant vertical loads the moment capacity of suction caissons was very small. Under partially drained conditions the moment capacity decreased with the increase of excess pore pressure. In clay, vertical cyclic loading around a mean vertical load of zero showed that in the short term the negative excess pore pressures generated during suction installation reduced vertical displacements. The yield surface and the flow rule were determined from moment swipe and constant vertical load tests. The moment capacity was found to depend on the ratio between the preload Vo and the ultimate bearing capacity Vu. Gapping response was observed during cyclic moment loading tests, but starting at smaller normalised rotations than in the field. The hysteresis loop shape obtained during gapping cannot be reproduced by means of the Masing’s rules.
10

Behaviour of footings for offshore structures under combined loads

Santa Maria, Paulo Eduardo Lima de January 1988 (has links)
The lack of knowledge about the behaviour of footings for jack-up rigs under storm loads poses a design problem which can be tackled by model testing. The areas of prime concern are the ultimate loads on footings under combined loading, which affects the safety of the rig, and the rotational stiffness, which affects the interaction between the foundation and the structure. A programme of loading tests was performed on model footings on clay, and was divided into two stages: monotonic loading and cyclic loading. The clay samples were obtained by consolidating Speswhite kaolin slurry in cylindrical tanks 450mm in diameter. The strength and compressibility characteristics of the samples were verified by means of standard laboratory tests. The model footings were 50mm and 100mm in diameter and several shapes were tested: circular flat plate, cones of various angles and model spud-cans. Loads and displacements were monitored using appropriate instrumentation and a data logger. A series of central vertical loading tests provided data for comparison with existing bearing capacity theories. Combined loading tests were performed applying a displacement controlled horizontal load at a fixed height above the footing which was also subjected to a fixed vertical load. The main series of tests involved a parametric study of the relevant variables. Special tests allowed the assessment of the effect of embedment of the footing and the interaction of a flexible leg with the foundation. Cyclic loading tests were carried out using a load controlled system which applied a sinusoidal load simulating wave action. Effects of currents were investigated by introducing an offset to the loading cycle. The influence of amplitude and period of loading as well as the influence of vertical load were also investigated. Special tests were carried out to cover some peculiarities of real loading conditions. Fitting of a three-parameter hyperbola to the test results provided a systematic and accurate method of analysis of monotonic loading tests, leading to valuable information involving stiffness and ultimate loads. Analysis of cyclic loading tests yielded useful qualitative information regarding the progress of settlement and the variation of rotational stiffness and damping ratio with the number of cycles.

Page generated in 0.1173 seconds