• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Saturation tracking and identification of residual oil saturation

Pak, Tannaz January 2015 (has links)
Carbonate rocks are of global importance as they contain about 50% of the world’s remaining hydrocarbon reserves and are also a major host to the world’s groundwater resources. Therefore, understanding and modelling the fluid flow processes in carbonates are of great importance. A critical problem is that, unlike homogenous media (such as sandstones), carbonates often show features, including porosity, that span across a wide spatial range, from sub-micron porosity to fractures of meters length-scale. In this study X-ray computed micro-tomography (μCT) has been utilised as a tool to monitor two phase (oil-brine) flow in porous carbonate (dolomite) plugs at ambient temperature and pressures smaller than 690 kPa. A simple, low-cost and highly X-ray transparent core-holder was utilised for which the design is introduced. Capillary end effects were recognised and avoided in data analysis. Displacement processes that occur in the dolomite under water-wet, oil-wet, and partially mixed-wet states were investigated. The experiments consisted of a series of drainage and imbibition processes occurring under capillary and viscous dominated flow regimes. Pore-scale mechanisms of piston-like displacement and snap-off (or at least clear results of them), that were previously observed in sandstones and 2D micro-models, were observed in the dolomite under study. In addition, a new pore-scale mechanism was identified which occurred at high capillary numbers, referred to as droplet-fragmentation. This new pore-scale mechanism may provide an explanation to the capillary-desaturation process for heterogeneous media. In the experiments performed on the oil-wet plug formation of a stable water in oil emulsion was observed which appears to be the first 3D observation of in situ emulsion formation made using μCT. Direct visualisation of the oil-brine-rock configurations and measurement of the contact angles are presented. A comparison was made for the contact angle distributions measured for the water-wet and oil-wet conditions. Observation of fluid displacement processes as well as oil-brine-rock contact angle distributions demonstrate that pore-scale imaging provides a promising tool for wettability characterisation on both pore and core scales. Such detailed wettability data can also be used in pore-scale flow models. For the dolomite under study multiple-scale pore network models were constructed by integrating single-scale networks extracted from μCT images acquired at different length-scales. Mercury injection capillary pressure laboratory measurements were used to evaluate the capillary pressure (vs. saturation) curves calculated using single, two-scale, and three-scale network models of this dolomite. The integrated networks displayed an improved match to the laboratory measurements in comparison with the single-scale network model. The three-scale network provided the closest simulated curve, this result confirms that a more representative model displays closer properties. While simulated capillary pressure curves are close (converging) for the integrated networks the calculated relative permeability curves show variability for different multiple-scale networks. The present work demonstrates that the pore-scale fluid displacement processes occurring in heterogeneous porous media are more complex than those occurring in homogeneous media. In addition, successful fluid flow simulations require construction of multiple-scale models as well as consideration of the pore-scale processes (such as droplet-fragmentation) that are specific to such complex pore systems.

Page generated in 0.0451 seconds