• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulation of the cavitating flow in a model oil hydraulic spool valve using different model approaches

Schümichen, Michel, Rüdiger, Frank, Fröhlich, Jochen, Weber, Jürgen 27 April 2016 (has links) (PDF)
The contribution compares results of Large Eddy Simulations of the cavitating flow in a model oil hydraulic spool valve using an Euler-Euler and a one-way coupled Euler- Lagrange model. The impact of the choice of the empirical constants in the Kunz cavitation model is demonstrated. Provided these are chosen appropriately the approach can yield reasonable agreement with the corresponding experiment. The one-way Euler-Lagrange model yields less agreement. It is demonstrated that this is due to the lack of realistic volumetric coupling, rarely accounted for in this type of method. First results of such an algorithm are presented featuring substantially more realism.
2

Predicting retention of diluted bitumen in marine shoreline sediments, Southeastern Vancouver Island, British Columbia, Canada

Britton, Lee Allen Sean 22 December 2017 (has links)
Canada has become increasingly economically dependent on the exportation of bitumen to trans-oceanic international markets. As the export of Alberta bitumen from ports located in British Columbia increases, oil spill response and readiness measures become increasingly important. Although the frequency of ship-source oil spills has dramatically declined over the past several decades, they remain environmentally devastating when they occur. In the event of a marine spill, great lengths of shoreline are at risk of being contaminated. Once ashore, oil can persist for decades if shoreline hydraulic conditions are correct and remediation does not occur. Most commonly transported oils (e.g., fuel oils, Bunker C, crude oil, etc.) have been thoroughly studied, and their fate and behaviour in the event of a marine spill is well understood. In contrast, because diluted bitumen has been historically traded in relatively low quantities and has almost no spill history, there is a sizable knowledge gap regarding its effects and behaviour in both the marine environment and on coastal shorelines. The intent of this thesis was to develop a classification scheme to identify marine shorelines of high and low diluted bitumen (dilbit) retention for southeastern Vancouver Island, British Columbia. This study builds upon the outcome of former laboratory bench top dilbit and sediment research known as Bitumen Experiments (Bit_Ex). Bit_Ex investigated dilbit penetration and retention in six engineered sediment classifications ranging from coarse sand to very large pebble in accordance with the Wentworth Classification scheme. This research used Bit_Ex findings to predict dilbit retention in poorly sorted in-situ beach sediments found on shorelines representative of the southern coast of Vancouver Island, British Columbia, Canada. Field and laboratory measurements were conducted to document the occurrence of in-situ shoreline sediments and hydraulic conditions and were used to predict dilbit retention by comparing such characteristics between Bit_Ex and unconsolidated in-situ beach sediments. Saturated hydraulic conductivity (Ks) was measured using a double-ring constant-head infiltrometer. Measured Ks values were then compared to predicted Ks values generated by five semi-empirical Ks equations. A modified version of the Hazen Approximation was selected as the most appropriate. Using measured and calculated metrics, sediments were grouped as having either low or high dilbit retention. When sediments were analysed as homogenous samples, the experimental results suggested two of ten shorelines were composed of a combination of low and high retention sections, while the remaining eight sites were of low retention. Upon the isolation of coarse surface strata, results indicated two shorelines were entirely veneered with high retention sediments, and four shorelines were a combination of high and low retention. The residual four shorelines were found to be entirely composed of low retention sediments. The results illuminate the importance of shoreline stratification when predicting shoreline oil retention. This characteristic is a factor that current shoreline oil retention mapping techniques do not adequately consider. Additionally, the findings suggest that while sediments indicative of retaining weathered dilbit are relatively uncommon within Juan de Fuca and Harro Straits, high retention unweathered dilbit sediments are more common. / Graduate / 2018-06-26
3

Simulation of the cavitating flow in a model oil hydraulic spool valve using different model approaches

Schümichen, Michel, Rüdiger, Frank, Fröhlich, Jochen, Weber, Jürgen January 2016 (has links)
The contribution compares results of Large Eddy Simulations of the cavitating flow in a model oil hydraulic spool valve using an Euler-Euler and a one-way coupled Euler- Lagrange model. The impact of the choice of the empirical constants in the Kunz cavitation model is demonstrated. Provided these are chosen appropriately the approach can yield reasonable agreement with the corresponding experiment. The one-way Euler-Lagrange model yields less agreement. It is demonstrated that this is due to the lack of realistic volumetric coupling, rarely accounted for in this type of method. First results of such an algorithm are presented featuring substantially more realism.
4

Experiments and Computational Fluid Dynamics on Vapor and Gas Cavitation for Oil Hydraulics

Osterland, Sven, Günther, Lennard, Weber, Jürgen 27 February 2024 (has links)
A compressible Euler-Euler computational fluid dynamics (CFD) model for vapor, gas, and pseudo-cavitation in oil-hydraulic flows is presented. For vapor, the Zwart-Gerber-Belamri (ZGB) model is used and for gas cavitation, the Lifante model. The aim is to determine the empirical parameters within the cavitation models for hydraulic oil by comparing CFD results to experiments in a realistic valve. The cavitating flow is visualized and measured for numerous operating points. By degassing, states of pure vapor cavitation are generated. The major findings are: (1) large eddy simulation turbulence modeling is essential, (2) vapor cavitation in mineral oil can be simulated very well with the ZGB model using the determined parameter, and (3) gas cavitation model provides useful results although not all details can be reflected and its scope is limited.

Page generated in 0.0496 seconds