• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 19
  • 8
  • 5
  • 2
  • 1
  • Tagged with
  • 79
  • 21
  • 18
  • 15
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Palladium catalysed oxidation of a-olefins to ketones.

Khuzwayo, Bonakele G. January 1997 (has links)
The aim of this research project was to investigate the oxidation reactions of olefins to ketones. Initial studies revolved around the oxidation reactions of terminal olefins to symmetrical dialkyl ketones. The inability to isolate pure products, and the consumption of large amounts of the expensive palladium catalyst for each run as well as the extremely low yields that resulted from these oxidation reactions, made it difficult to thoroughly investigate this oxidation system. It was then decided to embark on the investigation of oxidation reactions of a-olefins to methyl ketones. For these studies, six terminal olefins were oxidised to methyl ketones employing seven different oxidation reactions. One of the most important and pioneering reactions m this field is the system employing PdCl2 / CuCl2 / O2 for the oxidation of terminal olefins to methyl ketones, namely the Wacker oxidation reaction. Experimental results, however, indicated that high product contamination from by-products resulted from these oxidation reactions despite the fairly good yields of product from the Wacker oxidation system. Some reaction systems that have been developed from the Wacker oxidation system were also investigated. The oxidation system employing PdCl2 / p-benzoquinone for the oxidation of terminal olefins to ketones was studied. The oxidation reactions resulted in incomplete oxidation with higher olefins (l-decene, l-nonene and l-octene), and complete oxidation of lower olefins (l-heptene, l-hexene and l-pentene) under the same reaction conditions. The products from lower olefins oxidised under these reaction conditions were pure and high yielding Another system that proved efficient both with feasibility and good yields of products was the oxidation system employing Pd(OAc)2 / H202 catalyst to oxidise terminal olefins to methyl ketones. Phase transfer catalysis has been employed in organic chemistry to effect different reactions. In this case two types of phase transfer agents were employed to effect the oxidation of terminal olefins to ketones. The first oxidation system involved the use of a PdCl2 / CuCl2 / O2 catalyst with a quaternary ammonium salt, cetyltrimethylammonium bromide (CTAB), to govern the course of the reaction. Reasonable yields were obtained, and moderate purity of products was also observed. The second phase transfer catalysis system employed polyethylene glycol (PEG-200) as a phase transfer agent, and PdCl2 / CuCl2 / O2 as a catalyst for oxidation of olefins to ketones. This oxidation system resulted in different isomers of a ketone from a terminal olefin. Pure methyl ketones were not isolable from the mixture of methyl and ethyl ketones. The oxidation reactions of olefins to ketones employing Pd(OAc)2 / p-benzoquinone in combination with electrolysis were also investigated. The unique feature about these reactions was the fact that cyclic olefins could also be oxidised under these conditions. Good yields were obtained, and high product purity was observed. One of the important oxidation reactions investigated during the project was the reaction that used an alternative metal to the expensive palladium catalyst for the oxidation reactions to ketones. This oxidation system employs CuCl2 / 18-C-6 / acetaldehyde as a catalyst for the oxidation of hydrocarbons to ketones and alcohols. It was discovered during the investigation that olefins can also be used as substrates and are oxidised to the corresponding ketones. The use of olefins as substrates resulted in higher yields than the hydrocarbon oxidation reactions, and less contamination in the product mixture was also observed. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1997.
22

Product distribution directed modification of ZSM-5 / Maretha Fourie

Fourie, Maretha January 2012 (has links)
Ethylene and propylene are important chemical feedstocks for the production of polyethylene and polypropylene. Ethylene and propylene can be produced by various methods including steam cracking of liquefied natural gas (LNG), naphta or light olefin fractions. The methanol to olefin (MTO) process provides an alternative means of producing ethylene and propylene, where ZSM-5 is frequently used as catalyst due to its hydrophobicity, strong acidity, molecular sieve properties and low tendency towards coking, which makes ZSM-5 one the most popular zeolite catalysts in the industry. The oil crisis 1973 and the second oil crisis in 1978 caused the development of a commercial MTO process. Mobil Research and Development Corporation built a fixed-bed pilot plant to demonstrate the feasibility of the MTO as well as methanol-to-gasoline (MTG) process. When the oil price dropped again during the 1980’s, further developments of commercial processes were stopped for the time being. However, investigations on a bench scale are still pursued, and applications for patents are still submitted. During this study ZSM-5 was synthesized with a hydrothermal method, which produced agglomerated polycrystalline grains with characteristic ZSM-5 morphology and a Si/Al ratio of approximately 40. The synthesis time, synthesis temperature and aging time were varied while keeping all the other synthesis parameters constant in order to determine their influence on crystallite size. The synthesis time was varied between 12-72 hours, synthesis temperature was varied between 130-170°C and aging time between 30-90 minutes. Using SEM to determine crystal size, it was found that a variation in the aging time produced the largest crystallites (average of 21.6μm ± 10.8μm) while also having the largest influence on crystallite size followed by synthesis temperature (average of 13.1μm ± 4.9μm) and finally synthesis time (average of 5.7μm ± 0.4μm). In all cases XRD and SEM confirmed the formation of ZSM-5. To evaluate the as-synthesized ZSM-5 and compare it to a commercial ZSM-5 catalyst, Catalyst A using the MTO process, ZSM-5 was synthesized for 72 hours at 170°C with an aging time of 60 minutes before synthesis. The as-synthesized as well as Catalyst A’s agglomerated polycrystalline grains were sieved into three size fractions: smaller than 75μm, 75-150μm and 150-300μm. All six ZSM-5 fractions of ZSM-5 were used as catalysts for the MTO process in a fixed bed reactor at 400°C, atmospheric pressure and a 20wt% methanol to water feed. At 3.5 hours time on stream (TOS), the intermediate 75-150μm fraction had the highest light olefin selectivity for both the as-synthesized as well as Catalyst A, followed by the 150-300μm fraction and finally the smaller than 75μm fraction with the lowest light olefin selectivity. From this results it is clear that the as-synthesised ZSM-5 did not perform as well as Catalyst A. While the intercrystalline voids of the agglomerated ZSM-5 form second-order pores where self-diffusion is enhanced, the increased diffusional barriers created by the intercrystalline boundaries reduce the diffusion rate, promoting secondary reactions at the strong Brönsted acid sites thereby reducing ethylene and propylene selectivity. Coking reduces access to the Brönsted acid sites and plays a more influencial role for smaller crystallite sizes. Accordingly, the smaller than 75μm fraction had the lowest light olefin selectivity, while the 150-300μm fraction was probably least influenced by coking. The increased pathways for products and reagents in the 150-300μm fraction resulted in more secondary reactions taking place within this catalyst than the 75-150μm fraction explaining the superior performance of the 75-150μm fraction. Since the grain size determines the ratio of the external to the internal surface areas as well as the amount of intercrystalline boundaries in the catalyst, it follows that the catalytic activity and polycrystalline grain size ratio should actually be tailored when optimising the product distribution of the ZSM-5 catalysed MTO process. The as-synthesized ZSM-5 didn’t perform very well when compared to Catalyst A and modification of the synthesis method is recommended. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2012.
23

Product distribution directed modification of ZSM-5 / Maretha Fourie

Fourie, Maretha January 2012 (has links)
Ethylene and propylene are important chemical feedstocks for the production of polyethylene and polypropylene. Ethylene and propylene can be produced by various methods including steam cracking of liquefied natural gas (LNG), naphta or light olefin fractions. The methanol to olefin (MTO) process provides an alternative means of producing ethylene and propylene, where ZSM-5 is frequently used as catalyst due to its hydrophobicity, strong acidity, molecular sieve properties and low tendency towards coking, which makes ZSM-5 one the most popular zeolite catalysts in the industry. The oil crisis 1973 and the second oil crisis in 1978 caused the development of a commercial MTO process. Mobil Research and Development Corporation built a fixed-bed pilot plant to demonstrate the feasibility of the MTO as well as methanol-to-gasoline (MTG) process. When the oil price dropped again during the 1980’s, further developments of commercial processes were stopped for the time being. However, investigations on a bench scale are still pursued, and applications for patents are still submitted. During this study ZSM-5 was synthesized with a hydrothermal method, which produced agglomerated polycrystalline grains with characteristic ZSM-5 morphology and a Si/Al ratio of approximately 40. The synthesis time, synthesis temperature and aging time were varied while keeping all the other synthesis parameters constant in order to determine their influence on crystallite size. The synthesis time was varied between 12-72 hours, synthesis temperature was varied between 130-170°C and aging time between 30-90 minutes. Using SEM to determine crystal size, it was found that a variation in the aging time produced the largest crystallites (average of 21.6μm ± 10.8μm) while also having the largest influence on crystallite size followed by synthesis temperature (average of 13.1μm ± 4.9μm) and finally synthesis time (average of 5.7μm ± 0.4μm). In all cases XRD and SEM confirmed the formation of ZSM-5. To evaluate the as-synthesized ZSM-5 and compare it to a commercial ZSM-5 catalyst, Catalyst A using the MTO process, ZSM-5 was synthesized for 72 hours at 170°C with an aging time of 60 minutes before synthesis. The as-synthesized as well as Catalyst A’s agglomerated polycrystalline grains were sieved into three size fractions: smaller than 75μm, 75-150μm and 150-300μm. All six ZSM-5 fractions of ZSM-5 were used as catalysts for the MTO process in a fixed bed reactor at 400°C, atmospheric pressure and a 20wt% methanol to water feed. At 3.5 hours time on stream (TOS), the intermediate 75-150μm fraction had the highest light olefin selectivity for both the as-synthesized as well as Catalyst A, followed by the 150-300μm fraction and finally the smaller than 75μm fraction with the lowest light olefin selectivity. From this results it is clear that the as-synthesised ZSM-5 did not perform as well as Catalyst A. While the intercrystalline voids of the agglomerated ZSM-5 form second-order pores where self-diffusion is enhanced, the increased diffusional barriers created by the intercrystalline boundaries reduce the diffusion rate, promoting secondary reactions at the strong Brönsted acid sites thereby reducing ethylene and propylene selectivity. Coking reduces access to the Brönsted acid sites and plays a more influencial role for smaller crystallite sizes. Accordingly, the smaller than 75μm fraction had the lowest light olefin selectivity, while the 150-300μm fraction was probably least influenced by coking. The increased pathways for products and reagents in the 150-300μm fraction resulted in more secondary reactions taking place within this catalyst than the 75-150μm fraction explaining the superior performance of the 75-150μm fraction. Since the grain size determines the ratio of the external to the internal surface areas as well as the amount of intercrystalline boundaries in the catalyst, it follows that the catalytic activity and polycrystalline grain size ratio should actually be tailored when optimising the product distribution of the ZSM-5 catalysed MTO process. The as-synthesized ZSM-5 didn’t perform very well when compared to Catalyst A and modification of the synthesis method is recommended. / Thesis (MSc (Chemistry))--North-West University, Potchefstroom Campus, 2012.
24

Reativação in situ de um catalisador industrial de hidroformilação de olefinas (Rh/TPP) / In situ reactivation of an industrial catalyst fotr the hydroformylation of olefins (Rh/TPP)

Bannwart, Sandra Cecília 18 August 2018 (has links)
Orientador: Regina Buffon / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-18T08:53:24Z (GMT). No. of bitstreams: 1 Bannwart_SandraCecilia_M.pdf: 812230 bytes, checksum: b6487d1c0a090fc43a9884c0ab756e15 (MD5) Previous issue date: 2011 / Resumo: Analisou-se a solução catalítica de um catalisador industrial de hidroformilação de olefinas através de espectroscopia RMN de P, eletroforese capilar, cromatografia em camada delgada, cromatografia gasosa acoplada à espectrometria de massas e espectrometria de massas de alta resolução, a fim de tentar determinar a natureza das espécies de ródio presentes na solução e entender o que estaria causando a desativação do catalisador. Contudo, as únicas afirmações que podem ser feitas é que a solução contém trifenilfosfina livre (TPP) e seu óxido. Análises da solução do catalisador reciclado antes e após lavagem com trietanolamina (TEA), por espectrometria de massas de alta resolução, mostraram a diminuição do pico em 515 m/z após a lavagem do catalisador reciclado (de 52 % no catalisador reciclado antes da lavagem para 9% após a lavagem com TEA), sugerindo que a espécie associada a esse pico seria a responsável pela desativação. Entretanto, sua análise por MSMS permitiu a identificação apenas da TPP livre, confirmando a grande complexidade do sistema. Como segunda etapa deste trabalho, foram avaliados diferentes tratamentos realizados na solução catalítica (que contém um catalisador industrial de hidroformilação de olefinas (Rh/TPP), também denominado de catalisador reciclado) capazes de reativá-la. Dentre os tratamentos empregados, destaca-se a solução de TEA ¿ 10% (1 parte catalisador: 1 parte solução TEA - 10% (massa) em água (v/v)). Testes catalíticos na hidroformilação do 1-hexeno mostraram que, sem tratamento, o catalisador reciclado permitiu alcançar um TON de 20.773 em 4 h e que, após tratamento com esta solução, o aumento do TON foi significativo (29.995), equiparando-se ao número de Turnover do catalisador Padrão, que está livre de desativadores (TON = 29.057). Esses resultados permitem concluir que a desativação ocorre principalmente devido à presença de cloretos ou ácidos carboxílicos e que o processo desenvolvido é eficiente para a reativação do catalisador / Abstract: A solution of an industrial catalyst for the hydroformylation of olefins was analyzed by 31P NMR spectroscopy, capillary electrophoresis, thin layer chromatography, gas chromatography/mass spectrometry and high resolution mass spectrometry in order to investigate the nature of the rhodium species and try to understand the causes of catalyst deactivation. However, only free triphenylphosphine (TPP) and its oxide could be precisely detected. Analyses of the recycled catalyst before and after washing with triethanolamine (TEA), by high resolution mass spectrometry, showed a decrease of the peak in 515 m/z after washing (52% of the recycled catalyst before washing to 9% after washing with TEA), suggesting that this peak could be associated to the species responsible for catalyst deactivation. However, MSMS analysis of this peak showed only free TPP, confirming the complexity of the system under study. In the second phase of this study, different treatments of the catalytic solution (containing the industrial catalyst for hydroformylation of olefins (Rh / TPP), also called recycled catalyst), susceptible to reactivate it, were evaluated. Among the tested treatments, a solution of TEA - 10% (1 part catalyst / 1 part solution TEA-10% (mass) in water (v / v)) showed good results. Without this treatment, the recycled catalyst presented a TON = 20.773, in 4 h, in the hydroformylation of 1-hexene. After treatment, the observed TON was 29.995, similar to that obtained with a standard catalyst, free of deactivators (TON = 29.057). Therefore, we can conclude that deactivation takes place mainlly due to the presence of chlorides or carboxylic acids, and the developed procedure is effective for the reactivation of the catalyst / Mestrado / Quimica Inorganica / Mestre em Química
25

I-Hexene dimerisation over a solid phosphoric acid catalyst

Schwarzer, Renier Bernhard 28 June 2012 (has links)
Solid phosphoric acid is a catalyst used for the upgrading of light olefins into fuels. To delve into the mechanism of olefin dimerisation over the catalyst, the oligomerisation of 1- hexene was investigated over a wide range of operating conditions. The reaction progression of 1-hexene dimerisation over solid phosphoric acid was interpreted by means of kinetic experiments for both a linear hexene (1-hexene) and a branched hexene (2,3-dimethylbutene). The reaction rate for both reagents was described by using an elementary kinetic model. From the experimental data it was shown that the rate of dimerisation of branched hexenes was faster than the rate observed for linear hexene dimerisation. To correlate the two sets of kinetic data, the reaction network was expanded to incorporate skeletal isomerisation of 1-hexene with dimerisation only taking place by the co-dimerisation of linear and branched hexenes and the dimerisation of branched hexenes. The fit of the kinetic equation demonstrated that the reaction rate of 1-hexene is essentially controlled by the rate of skeletal isomerisation. Due to the large activation energy for skeletal isomerisation, low reaction temperatures favoured the co-dimerisation of linear and branched hexenes whereas at higher temperatures, the reaction rate was dominated by the dimerisation of branched hexenes. The product distribution indicated that, because of the fast rates of both cracking and secondary dimerisation (dimerisation of cracked products), the product distribution instantaneously reached a pseudo equilibrium after the dimerisation of hexenes. Therefore the carbon distribution was found to depend only on the reaction temperature, not on the residence time in the reactor. Solid phosphoric acid is a supported liquid phosphoric acid where the condensed state of the acid, e.g. ortho phosphoric acid (H3PO4) and pyro phosphoric acid (H4P2O7), is dependent on the quantity of water present in the reaction mixture. With a decrease in water content, the distribution of acid shifts and the ortho phosphoric acid becomes more condensed (H4P2O7, H5P3O9 etc.), i.e. high water content → low acid strength, low water content → high acid strength. The experiments completed at various degrees of catalyst hydration and free acid loading showed that the rate of reaction over solid phosphoric acid was dependent on the acid strength of the catalyst. The effect of acid strength on the reaction rate was integrated into the rate constants by means of an exponential dependency on acid strength. It was also shown that both the product distribution and the degree of branching remained unaffected by acid strength. The constant product indicates that the rate of cracking is limited by the rate of oligomerisation of hexenes, irrespective of the acid strength of the catalyst. Since the product from the dimerisation of 1-hexene could be used as fuel, the quality of the desired fuel would therefore depend solely on the reaction temperature, not on the hydration of the catalyst. The work performed in this thesis has been published in two peer-review articles: 1. Schwarzer R.B., Du Toit E. and Nicol W. (2008) Kinetic model for the dimerisation of 1-hexene over a solid phosphoric acid catalyst, Applied Catalysis A: General, 340, 119-124. 2. Schwarzer R.B., Du Toit E. and Nicol W. (2009) Solid phosphoric acid catalysts: The effect of free acid composition on selectivity and activity for 1-hexene dimerisation, Applied Catalysis A: General, 369, 83-89. / Thesis (PhD(Eng))--University of Pretoria, 2012. / Chemical Engineering / unrestricted
26

Production of Green Aromatics and Olefins from Lignocellulosic Biomass by Catalytic Fast Pyrolysis: Chemistry, Catalysis, and Process Development

Jae, Jungho 01 May 2012 (has links)
Diminishing petroleum resources combined with concerns about global warming and dependence on fossil fuels are leading our society to search for renewable sources of energy. In this respect, lignocellulosic biomass has a tremendous potential as a renewable energy source, once we develop the economical processes converting biomass into useful fuels and chemicals. Catalytic fast pyrolysis (CFP) is a promising technology for production of gasoline range aromatics, including benzene, toluene, and xylenes (BTX), directly from raw solid biomass. In this single step process, solid biomass is fed into a catalytic reactor in which the biomass first thermally decomposes to form pyrolysis vapors. These pyrolysis vapors then enter the zeolite catalysts and are converted into the desired aromatics and olefins along with CO, CO2, H2O, and coke. The major challenge with the CFP process is controlling the complicated homogeneous and heterogeneous reaction chemistry. The focus of this thesis is to study the reaction chemistry, catalyst design, and process development for CFP to advance the CFP technology. To gain a fundamental understanding of the underlying chemistry of the process, we studied the reaction chemistry for CFP of glucose (i.e. biomass model compound). Glucose is thermally decomposed in a few seconds and produce dehydrated products, including anhydrosugars and furans. The dehydrated products then enter into the zeolite catalyst pore where they are converted into aromatics, CO, CO2, H2O and coke. The zeolite catalyzed step is far slower than the initial decomposition step (>2 min). Isotopic labeling studies revealed that the aromatics are formed from random hydrocarbon fragments composed of the dehydrated products. The major competing reaction to aromatic production is the formation of coke. The main coking reaction is the polymerization of the furan intermediates on the catalyst surface. CFP is a shape selective reaction where the product selectivity is related to the zeolite pore size and structure. The shape selectivity of the zeolite catalysts in the CFP of glucose was systematically studied with different zeolites. The aromatic yield is a function of the pore size and internal pore space of the zeolite catalyst. Medium pore zeolites with pore sizes in the range of 5.2 to 5.9 Å and moderate pore intersection size, such as ZSM-5 and ZSM-11 produced the highest aromatic yield and least amount of coke. The kinetic diameter estimation of the aromatic products and the reactants revealed that the majority of these molecules can fit inside the zeolite pores of the medium pore zeolites. The ZSM-5 catalyst, the best catalyst for aromatic production, was modified further to improve its catalytic performance. These modifications include: (1) adjusting the concentration of acid sites inside the zeolites catalyst; (2) incorporation of mesoporosity into the ZSM-5 framework to enhance its diffusion characteristics, and (3) addition of Ga to the ZSM-5. Mesoporous ZSM-5 showed high selectivity for heavier alkylated monoaromatics. Ga promoted ZSM-5 increased the aromatic yield over 40%. A process development unit was designed and built for continuous operation of the CFP process in a pilot scale. The effects of process variables such as temperature, biomass weight hourly space velocity, catalyst to biomass ratio, catalyst static bed height, and fluidization gas velocity were studied to optimize the reactor performance. It was demonstrated that CFP could produce liter quantities of aromatic products directly from solid biomass.
27

Mechanisitic Studies on the Photoaddition Reactions of 3-Phenylcyclohex-2-enone with Olefins

Ramachandran, Bellampalli 06 1900 (has links)
<p> A detailed study of the photoaddition of 3-phenylcyclohex- 2-enone and 2,3-dimethylbut-2-ene was undertaken in order to gain mechanistic information of the photochemistry of this enone. Photoadditions of this enone with cyclopentene, norbornene, and but-2-ene were also studied. Sensitization experiments showed that photoaddition with 2,3-dimethylbut-2-ene occurs when triplet sensitizers such as Michler's ketone or 2-acetonaphthone are used. The sensitized reactions are less efficient than the direct irradiation, except at infinite 2,3-dimethylbut-2-ene concentration, when the quantum yields for direct and sensitized processes are the same. This quantitative result may be explained by (a) inefficiency in the energy-transfer process from the sensitizer to enone 0 or (b) two excited states of enone being involved in the direct and sensitized processeso There are evidences that the excited state involved in the direct irradiation could possibly be the second triplet of the enoneo The presence of a higher enone tTiplet (T2) was established by the observed dimerization of norbornene. Cis-trans isomerization of but-2-ene was observed during photoaddition, which could also be attributed to a higher triplet, or to a 1,4-diradical intermediates Quenching studies provided an estimate of the lifetime of the reactive excited state in the direct irradiation. The energies of the electronic states of the enone were estimated from spectroscopic and chemical measurements. The formation of an enoneoolefin 1,4-diradical has been proposed to explain the effect of olefin concentration on the photoaddition. </p> / Thesis / Doctor of Philosophy (PhD)
28

Synthesis and Reactivity of Functionalised Triarylphosphines in Organic Synthesis

Keskar, Kunal 12 1900 (has links)
The goal of this research was to develop alternate economic routes for the synthesis of functionalised triarylphosphines. Such species are employed as catalysts ligands in chemical synthesis and can be incorporated into designed-ylides for olefination reactions. The synthesis of the SHOP ligand, the key constituent of the Shell Higher Olefins Process for making linear alpha olefins via ethylene oligomerisation and olefin metathesis, is described using four totally new approaches. These include a Directed Ortho Metalation (DOM) approach, Copper iodide catalyzed cross-coupling, Halogen-Magnesium Exchange reaction and Diazonium salt approaches. The efficiency, in terms of overall yield and mild process conditions, make some of the routes potentially commercialisable. Additionally, a series of ortho-substitued triarylphosphines were derived to probe and modulate the reactivity of the Wittig reaction. We report that non-stabilized ortho-P-alkoxy-substituted ylides react with aromatic and aliphatic aldehydes providing (E)-olefins with high stereocontrol employing an intramolecular phenoxy and alkoxy substituent to promote (E)-olefination through betaine interconversion. In one particular case; removal of phosphoine oxide was also achieved. Extension of this methodology was also carried out on semi-stabilized benzylic ylides, which are known for producing 1:1 mixtures of (E):(Z) olefins under classical condition. Potential applications of the methodology are also described. / Thesis / Master of Science (MSc)
29

Water Soluble Phosphines, Their Transitional Metal Complexes, and Catalysts

Kang, Jianxing 19 May 1997 (has links)
In recent years two-phase catalysis has been established as a new field of catalyzed processes and has achieved industrial-scale importance in olefin hydroformylation. Two-phase reactions have a number of advantages, for example, ease of separation of catalyst and product, catalysts can be tailored to the particular problem, use of special properties and effects of water as a solvent, and low environmental impact. For higher olefins (* C6), the reaction suffers low activity due to low water solubility of higher olefins. Tricesium analog of TPPTS, m,m,m-trisulfonated triphenylphosphine, was synthesized and fully characterized. Two-phase olefin hydroformylation with Rh(acac)(CO)2 was investigated. The results indicated that both activity and selectivity (linear to branch aldehyde ratio) are similar to Rh/TPPTS system. The salt effect showed that increase the solution ionic strength will increase the selectivity and decrease the activity in the olefin hydroformylation with TPPTS. A new surface active phosphine, trisulfonated tris-m-(3henylpropyl)phenylphosphine, was synthesized and fully characterized. The results of biphasic olefin hydroformylation were consistent with aggregation of the ligand. The two phase 1-octene hydroformylation results showed that with only 3 methylene groups, there is no difference between the para and meta position of C3 group. A new chelating diphosphine, tetrasulfonated 2,2'-bis{di[p-(3 phenylpropyl)phenyl]phosphinomethyl}-1,1'-biphenyl,was prepared and fully characterized. Its application in two-phase hydroformylation of olefin showed enhanced activity and selectivity compared to the non-chelated phosphine analog. Finally, homogeneous asymmetric hydrogenation was carried out in the presence of a chiral surfactant in an attempt to affect asymmetric induction. The catalytic results showed that at a surfactant/Rh ratio of 25, the asymmetric hydrogenation of AACA-Me (a-Acetamidocinnamic Acid Methyl Ester) in methanol has no effect on asymmetric induction with the introduction of this chiral surfactant. / Master of Science
30

An investigation of new heterogeneous hydrotalcite-like catalysts for the cis-dihydroxylation of olefins.

Govender, Mayashree. January 2004 (has links)
The use of supported catalysts to essentially combine the positive traits offered by both homogeneous and heterogeneous catalysis has become a competitive field of research. In particular, hydrotalcite-like catalysts (HTIc) has proven to be valuable for this purpose. Various osmium - containing catalysts were synthesized according to the co-precipitation method viz. Os-Cu-HTIc, Os-Ni-HTlc and the Os-Co-HTlc. Techniques such as SEM, IR, EDS, XRD, ICP, BET and XPS were exploited during catalyst characterisation and these essentially confirm that the hydrotalcite (HT) structure has been obtained. Various olefin substrates, ranging from simple straight-chained alkenes to cyclic, allylic and halogenated olefins, were tested. The results are promising and suggest that the diols are produced both with high selectivity and in good yield. Further experiments suggest: 1) Ofthe various co-oxidants tested, N-methylmorpholine-N-oxide is most suitable 2) The reaction proceeds faster at 60 °C than at room temperature 3) The addition of water to the reaction mixture increases the rate of the reaction for most substrates and 4) The catalyst is thermally stable and produces better results when calcined at 200 0 C prior to use This thesis reports that a new heterogeneous catalytic system for the efficient and selective cisdihydroxylation of olefins has been developed - one which suggests no leaching of metal into the reaction solution and no over-oxidation products. / Thesis (M.Sc.)-University of KwaZulu Natal, 2004.

Page generated in 0.0859 seconds