• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Omnibus Sequences, Coupon Collection, and Missing Word Counts

Abraham, Sunil, Brockman, Greg, Sapp, Stephanie, Godbole, Anant P. 01 June 2013 (has links)
In this paper, we study the properties of k-omnisequences of length n, defined to be strings of length n that contain all strings of smaller length k embedded as (not necessarily contiguous) subsequences. We start by proving an elementary result that relates our problem to the classical coupon collector problem. After a short survey of relevant results in coupon collection, we focus our attention on the number M of strings (or words) of length k that are not found as subsequences of an n string, showing that there is a gap between the probability threshold for the emergence of an omnisequence and the zero-infinity threshold for E(M).
2

Omnibus Sequences, Coupon Collection, and Missing Word Counts

Abraham, Sunil, Brockman, Greg, Sapp, Stephanie, Godbole, Anant P. 01 June 2013 (has links)
In this paper, we study the properties of k-omnisequences of length n, defined to be strings of length n that contain all strings of smaller length k embedded as (not necessarily contiguous) subsequences. We start by proving an elementary result that relates our problem to the classical coupon collector problem. After a short survey of relevant results in coupon collection, we focus our attention on the number M of strings (or words) of length k that are not found as subsequences of an n string, showing that there is a gap between the probability threshold for the emergence of an omnisequence and the zero-infinity threshold for E(M).

Page generated in 0.0507 seconds