• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10087
  • 3818
  • 1789
  • 1243
  • 1173
  • 1167
  • 284
  • 221
  • 199
  • 140
  • 128
  • 123
  • 113
  • 106
  • 103
  • Tagged with
  • 24073
  • 4202
  • 3057
  • 2905
  • 2221
  • 2063
  • 2001
  • 1821
  • 1686
  • 1420
  • 1253
  • 1238
  • 1234
  • 1180
  • 1161
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

The time value of military force in modern warfare the airpower advantage /

Givhan, Walter D. January 1900 (has links)
Thesis--School of Advanced Airpower Studies, Maxwell Air Force Base, Ala., 1994-95. / Title from title screen (viewed Oct. 22, 2003). "March 1996." Includes bibliographical references.
252

Developing and automating time delay system stability analysis of dynamic systems using the Matrix Lambert W (MLW) function method

Pietarila, Kristel M., Fales, Roger. January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 16, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Roger Fales. Vita. Includes bibliographical references.
253

Silogísticas del sobresalto : resonancias científicas en la obra de José Lezama Lima / Resonancias científicas en la obra de José Lezama Lima

Vargas, Omar 19 July 2012 (has links)
My dissertation is an interdisciplinary work dealing with the intersection of the work of the Cuban poet, essayist, novelist, editor and cultural promoter José Lezama Lima (La Habana, Cuba, 1910-1976) with some of the main Western scientific developments and discoveries of the first half of the twentieth century. Even when a considerable number of canonical studies have mapped Lezama's place in the cartographies of modern and postmodern thought, what I do is completely new in this field. In my work I combine methods and insights from Cuban intellectual history and cultural studies, about the impact of new development in physics and mathematics on the discourse of the humanities and the literary and popular imagination, to do a new type of close reading of Lezama's texts, one that reveals the important role that key elements that he "appropriated" from Riemann geometry, relativity theory, quantum physics, and thermodynamics play in the fashioning of his ambitious "poetic system of the world." Although this type of analysis has successfully been applied to other authors such as James Joyce and Jorge Luis Borges, no attempt has been made to study Lezama Lima’s work from this perspective. I argue that examining the structural and organic relationships of Lezama with the work of scientists such as Albert Einstein provides a unique and effective framework for understanding the "chaos-like" and "fractal-like" theoretical and temporal complexities displayed by the Cuban author in his work. / text
254

Stability analysis and controller synthesis of continous-time linear time-delay systems

Du, Baozhu., 杜宝珠. January 2010 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
255

On mixed portmanteau statistics for the diagnostic checking of time series models using Gaussian quasi-maximum likelihood approach

Li, Yuan, 李源 January 2012 (has links)
This thesis aims at investigating different forms of residuals from a general time series model with conditional mean and conditional variance fitted by the Gaussian quasi-maximum likelihood method. We investigated the limiting distributions of autocorrelation and partial autocorrelation functions under different forms of residuals. Based on them we devised some individual portmanteau tests and two mixed portmanteau tests. We started by exploring the asymptotic normalities of the residual autocorrelation functions, the squared residual autocorrelation functions and absolute residual autocorrelation functions from the fitted time series model. This leads to three individual portmanteau tests. Then we generalized them to their counterparts of partial autocorrelation functions, and this results in another three individual portmanteau tests. We carried out simulations studies to compare the six individual portmanteau tests and find that some tests are sensitive to mis-specification in the conditional mean while other tests are effective to detect mis-specification in the conditional variance. However, for the case that the mis-specifications happen in both conditional mean and variance, none of these individual portmanteau tests present remarkable power. Based on this, we continued to investigate the joint limiting distributions of the residual autocorrelation functions and absolute residual autocorrelation functions of the fitted model since the former one is powerful to identify mis-specification in the conditional mean and the latter one works well when the conditional variance is mis-specified. This leads to two mixed portmanteau tests for diagnostic checking of the fitted model. Simulation studies are carried out to check the asymptotic theory and to assess the performance of the mixed portmanteau tests. It shows that the mixed portmanteau tests have the power to detect mis-specification in the conditional mean and conditional variance respectively while it is feasible to detect both of them. / published_or_final_version / Statistics and Actuarial Science / Master / Master of Philosophy
256

On some new threshold-type time series models

Guan, Bo., 关博. January 2013 (has links)
The subject of time series analysis has drawn significant attentions in recent years, since it is of tremendous interest to practitioners, as well as to academic researchers, to make statistical inferences and forecasts of future values of the interested variables. To do forecasting, parametric models are often required to describe the patterns of the observed data set. In order to describe data adequately, such statistical models should be established based on fundamental principles. Two threshold-type time series models, the buffered threshold autoregressive (BAR) model and the threshold moving-average (TMA) model are studied in this thesis. The most important contribution of this thesis is the extension of the classical threshold models via regime switching mechanisms that exhibit hysteresis to a new model called the buffered threshold model. For this type of new models, there is a buffer zone for the regime switching mechanism. The self-exciting buffered threshold autoregressive model has been thoroughly studied: a sufficient condition is given for the geometric ergodicity of the two-regime BAR process; the conditional least squares estimation is considered for the parameter estimation of the BAR model, and asymptotic properties including strong consistency and asymptotic distributions of the least square estimators are also derived. Monte Carlo experiments are conducted to give further support to the methodology developed for the new model. Two empirical examples are used to demonstrate the importance of the BAR model. Potential extensions for the basic buffer processes are discussed as well. Such extensions are expected to follow the development of classical threshold model and are motivated by their relationships with phenomena in the physical sciences. The proposed buffer process is more general than the classical threshold model, and it should be able to capture more nonlinear features exhibited by this nonlinear world than its predecessor. Although the theoretical understanding of the model is still at its infancy, it is believed that the buffer process will provide both researchers and practitioners with a useful tool to understand the nonlinear world. Moreover, some statistical properties of the threshold moving-average models are studied. Computer simulations have been extensively used, and some mathematical interpretation is attempted in the light of some existing research works. The model-building procedure for the TMA models is also reviewed. The effectiveness of some classical information criteria in selecting the correct TMA model is studied. A goodness-of-fit test is derived which would be useful in diagnostic checking the fitted TMA models. / published_or_final_version / Statistics and Actuarial Science / Doctoral / Doctor of Philosophy
257

Statistical inference for some econometric time series models

Li, Yang, 李杨 January 2014 (has links)
With the increasingly economic activities, people have more and more interest in econometric models. There are two mainstream econometric models which are very popular in recent decades. One is quantile autoregressive (QAR) model which allows varying-coefficients in linear time series and greatly promotes the ranges of regression research. The first topic of this thesis is to focus on the modeling of QAR model. We propose two important measures, quantile correlation (QCOR) and quantile partial correlation (QPCOR). We then apply them to QAR models, and introduce two valuable quantities, the quantile autocorrelation function (QACF) and the quantile partial autocorrelation function (QPACF). This allows us to extend the Box-Jenkins three-stage procedure (model identification, model parameter estimation, and model diagnostic checking) from classical autoregressive models to quantile autoregressive models. Specifically, the QPACF of an observed time series can be employed to identify the autoregressive order, while the QACF of residuals obtained from the model can be used to assess the model adequacy. We not only demonstrate the asymptotic properties of QCOR, QPCOR, QACF and PQACF, but also show the large sample results of the QAR estimates and the quantile version of the Ljung- Box test. Moreover, we obtain the bootstrap approximations to the distributions of parameter estimators and proposed measures. Simulation studies indicate that the proposed methods perform well in finite samples, and an empirical example is presented to illustrate the usefulness of QAR model. The other important econometric model is autoregressive conditional duration (ACD) model which is developed with the purpose of depicting ultra high frequency (UHF) financial time series data. The second topic of this thesis is designed to incorporate ACD model with one of the extreme value distributions, i.e. Fréchet distribution. We apply the maximum likelihood estimation (MLE) to Fréchet ACD models and derive its generalized residuals for model adequacy checking. It is noteworthy that simulations show a relative greater sensitiveness in the linear parameters to sampling errors. This phenomenon successfully reflects the skewness of the Fréchet distribution and suggests a method to practitioners in proceeding model accuracy. Furthermore, we present the empirical sizes and powers for Box-Pierce, Ljung-Box and modified Box-Pierce statistics as comparisons of the proposed portmanteau statistic. In addition to the Fréchet ACD, we also systematically analyze theWeibull ACD, where the Weibull distribution is the other nonnegative extreme value distribution. The last topic of the thesis explains the estimation and diagnostic checking the Weibull ACD model. By investigating the MLE in this model, there exhibits a slight sensitiveness in linear parameters. However, there is an obvious phenomenon on the trade-off between the skewness of Weibull distribution and the sampling error when the simulations are conducted. Moreover, the asymptotic properties are also studied for the generalized residuals and a goodness-of-fit test is employed to obtain a portmanteau statistic. Through the simulation results in size and power, it shows that Weibull ACD is superior to Fréchet ACD in specifying the wrong model. This is meaningful in practice. / published_or_final_version / Statistics and Actuarial Science / Doctoral / Doctor of Philosophy
258

On a buffered conditional volatility process

Lo, Pak-hang, 勞柏衡 January 2014 (has links)
The traditional threshold time series model is famous for its capability in capturing asymmetry. Regime switching takes place immediately when a certain variable crosses the threshold. However, this type of model may not be suitable for data which have no clear cut between regimes. A new generation of threshold type model, buffered time series model, is modified from the traditional threshold time series model. A buffer zone is introduced to replace the role of the threshold; regime switching will not take place within the buffer zone. The regime switching mechanism mimicks a climatological example and the buffered model may be suitable for data in which there is a region where the probabilistic structure of the data is insensitive to changes. Self-exciting buffered generalized autoregressive conditional heteroscedasticity (buffered GARCH) model is considered. Quasi-maximum likelihood is employed for parameter estimation. Strong consistency and asymptotic distributions are derived. Simulation experiments are carried out to verify the properties of the estimators. The buffered GARCH model is applied to two currency exchange rate data sets, US dollar to Moroccan dirham exchange rate and US dollar to Israeli new shekel exchange rate. At the same time, threshold GARCH model is also applied to the data sets in order to have comparison between the buffered GARCH model and threshold GARCH model. It is found that the buffered GARCH model beats the threshold GARCH model in terms of one information criterion, revealing that the buffered GARCH model may have advantage over the threshold GARCH model. / published_or_final_version / Statistics and Actuarial Science / Master / Master of Philosophy
259

On mixture double autoregressive time series models

Liu, Zhao, 劉釗 January 2013 (has links)
Conditional heteroscedastic models are one important type of time series models which have been widely investigated and brought out continuously by scholars in time series analysis. Those models play an important role in depicting the characteristics of the real world phenomenon, e.g. the behaviour of _nancial market. This thesis proposes a mixture double autoregressive model by adopting the exibility of mixture models to the double autoregressive model, a novel conditional heteroscedastic model recently proposed by Ling (2004). Probabilistic properties including strict stationarity and higher order moments are derived for this new model and, to make it more exible, a logistic mixture double autoregressive model is further introduced to take into account the time varying mixing proportions. Inference tools including the maximum likelihood estimation, an EM algorithm for searching the estimator and an information criterion for model selection are carefully studied for the logistic mixture double autoregressive model. We notice that the shape changing characteristics of the multimodal conditional distributions is an important feature of this new type of model. The conditional heteroscedasticity of time series is also well depicted. Monte Carlo experiments give further support to these two new models, and the analysis of an empirical example based on our new models as well as other mainstream ones is also reported. / published_or_final_version / Statistics and Actuarial Science / Master / Master of Philosophy
260

Integration of hard real-time schedulers

Wang, Weirong 28 August 2008 (has links)
Not available / text

Page generated in 0.0629 seconds