• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 45
  • 8
  • 8
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 224
  • 224
  • 41
  • 31
  • 26
  • 24
  • 24
  • 22
  • 21
  • 21
  • 19
  • 18
  • 16
  • 16
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Integrace nanostruktur do funkčních celků / Integration of nanostructures into functional devices

Citterberg, Daniel January 2019 (has links)
This master thesis is focused on characterization of electrical transport properties of one-dimensional nanostructures. First section of this work deals with theoretical description of the experimental approaches to realization of such measurements. This section involves also a detail discussion of preparation of contacts using e-beam lithography. Next, theoretical description of characterization of nanostructures using photoluminescence measurements is given. Second section describes practical application of the aforementioned electrical transport measurements. Presented results include transport and photoluminescence measurements of WS2 nanotubes, InAs and WO2.72 nanowires. The last section of this thesis deals with nanowire quantum well heterostructures. The section provides both a deeper theoretical view of the problem and results of the photoluminescence measurements are shown.
62

Charakterizace senzitivních nanomateriálů pro MOX senzory plynů / Characterization of sensitive nanomaterials for MOX gas sensors

Priščák, Juraj January 2021 (has links)
This thesis deals with one-dimensional (1D) and two-dimensional nanomaterials (2D) in terms of their utilization for new types of gas sensors. Thesis focuses on study of sensing elements for gas sensors based on semiconductor metal oxide materials (MOX) and their manufacturing technology. The objective of the thesis is the design and implementation of a sensing elements formed by selected nanomaterials based on the structure of interdigital electrodes. The result of the practical part of the thesis is the characterization and comparison of materials in terms of their detection parameters in the presence of selected test gases. The first part of thesis hierarchically defines chemoresistive gas sensor, characterizes and explains its operation principle. Second part studies 1D and 2D nanomaterials of sensing elements for MOX chemoresistive gas sensors, contains a research of their properties and describes their methods of manufacturing and implementation. The last part deals with the implementation of the sensitive layer of the sensor with selected nanomaterials, characterizes and compares their detection properties.
63

Classification of Five-Dimensional Lie Algebras with One-dimensional Subalgebras Acting as Subalgebras of the Lorentz Algebra

Rozum, Jordan 01 May 2015 (has links)
Motivated by A. Z. Petrov's classification of four-dimensional Lorentzian metrics, we provide an algebraic classification of the isometry-isotropy pairs of four-dimensional pseudo-Riemannian metrics admitting local slices with five-dimensional isometries contained in the Lorentz algebra. A purely Lie algebraic approach is applied with emphasis on the use of Lie theoretic invariants to distinguish invariant algebra-subalgebra pairs. This method yields an algorithm for identifying isometry-isotropy pairs subject to the aforementioned constraints.
64

One-Dimensional Modeling of Bromide Tracer and Trichloroethylene Transport Based on Laboratory Experiments in Vertical Soil Columns

Murch, Keri L. 01 May 2003 (has links)
Enhanced biodegradation using carbon donor and microbial addition is being considered as a possible remediation technique for a trichloroethylene (TCE) contaminated area in Sunset, Utah, west of the source area on Hill Air Force Base. As a precursor to any in situ remediation attempts, several laboratory treatability experiments are being conducted, including the construction of microcosms and flow-through columns. Nine large-scale flow-through columns were built using site groundwater and aquifer material. Bromide tracer tests were conducted to establish and understand the hydraulic conditions within the columns prior to the commencement of the TCE biodegradation experiments. Four predictive models were created to show potential degradation scenarios in the columns and in the field using microcosm data for various system treatments. Treatments selected for modeling indicated that carbon addition alone is insufficient in stimulating dechlorination of TCE. Microbial amendments will be necessary in the column systems when the TCE dechlorination experiments begin.
65

Copernican and Eratosthenian tectonics in the northwestern Imbrium region of the Moon revealed by conventional remote sensing techniques and newly developed one-dimensional crater chronology / 従来のリモートセンシング法と新たに開発した一次元クレータ年代法で明らかになった月の雨の海北西部におけるコペルニクス紀とエラトステネス紀のテクトニクス

Daket, Yuko 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20602号 / 理博第4317号 / 新制||理||1620(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 山路 敦, 教授 山 明, 准教授 伊藤 正一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
66

Dispersive Estimates of Schrodinger and Schrodinger-Like Equations in One Dimension

Hill, Thomas 15 October 2020 (has links)
No description available.
67

An Application of LatentCF++ on Providing Counterfactual Explanations for Fraud Detection

Giannopoulou, Maria-Sofia January 2023 (has links)
The aim of explainable machine learning is to aid humans in understanding how exactly complex machine learning models work. Machine learning models have offered great performance in various areas. However, the mechanisms behind how the model works and how decisions are being made remain unknown. This specific constraint increases the user’s hesitation to trust the results of the model and even to improve their performance further. Counterfactual explanation is one method to offer explainability in machine learning by indicating what would have happened if the input of a model was modified in a specific way. Fraud is the action of acquiring something from someone else in a dishonest manner. Companies’ and organizations’ vulnerability to malicious actions has been increasing due to the development of digitalization. Machine learning applications have been successfully put in place to tackle fraudulent actions. However, the severity of the impact of fraudulent actions has highlighted the need for further scientific exploration of the topic. The current research will attempt to do so by studying counterfactual explanations related to fraud detection. Latent-CF is a method for counterfactual generation that utilizes an autoencoder and gradient descent in its latent space. LatentCF++ is an extension of Latent-CF. It utilizes a classifier and an autoencoder. The aim is to perturb the encoded latent representation through a gradient descent optimization for counterfactual generation so that the initially undesired class is then classified with the desired prediction. Compared to Latent-CF, LatentCF++ uses Adam optimization and adds further constraints to ensure that the generated counterfactual’s class probability surpasses the set decision boundary. The research question the current thesis addresses is: “To what extent can LatentCF++ provide reliable counterfactual explanations in fraud detection?”. In order to provide an answer to this question, the study is applying an experiment to implement a new application of LatentCF++. The current experiment utilizes a onedimensional convolutional neural network as a classifier and a deep autoencoder for counterfactual generation in fraud data. This study reports satisfying results regarding counterfactual explanation production of LatentCF++ on fraud detection. The classification is quite accurate, while the reconstruction loss of the deep autoencoder employed is very low. The validity of the counterfactual examples produced is lower than the original study while the proximity is lower. Compared to baseline models, k-nearest neighbors outperform LatentCF++ in terms of validity and Feature Gradient Descent in terms of proximity.
68

One-Dimensional Performance Modeling of Centrifugal Flow Vaned Diffusers

Bitter, Jamin J. 02 March 2007 (has links) (PDF)
The Two Element in Series (TEIS) and Two Zone models stand out as powerful tools that enable deeper understanding of compressor stage designs after they have been tested. The insights gained from these investigations have aided in improving new stage designs. Up to now, it has only been possible to use the TEIS and Two Zone models for analysis of test data due to the inability to predict the four required input parameters for untested machines. Empirical models for the TEIS and Two Zone model input parameters, ETAa5, ETAb5, Chi5, and DELTA5p, for two different types of vaned diffusers, channel and cascade, are proposed. These models were developed with frozen impeller modeling. This is the first time that modeling the TEIS and Two Zone input parameters has been attempted for vaned diffusers and impeller-diffuser coupling was not considered in this initial investigation. The centrifugal compressor experimental data used in the model building was obtained from Concepts NREC, an industry sponsor. Each dataset provided was evaluated for quality and reliability and only the data deemed reliable were used in the model building databases. The empirical models presented are built solely on this higher quality data. Seven models are proposed for use in predicting the TEIS and Two Zone model input parameters ETAa5, ETAb5, Chi5, and DELTA5p. Models for ETAa5, ETAb5, and DELTA5p are specific to the type of vane present in the diffuser, while the model for Chi5 is common to both diffuser types. These are the first models ever built for the TEIS and Two Zone model inputs applied to channel and cascade diffusers and become a benchmark for future studies. The work with these models is not complete, however. The databases are not of a size that data could be withheld from empirical model building for the express purpose of validation. Instead the model performance is evaluated by applying all of the models, simultaneously, to the database from which they were built. The determination of the effectiveness of the combined modeling is based on the average error across the entire speedline. The models proved to be effective and a contributing step to employing such models for use in future compressor design.
69

One-Dimensional Radial Flow Turbomachinery Performance Modeling

Pelton, Robert John 03 December 2007 (has links) (PDF)
The Two-Element In Series (TEIS) and Two-Zone models have been used successfully for over twenty years to model test data for radial flow compressors and pumps. The models can also be used to predict the performance of new machines provided that the model inputs can be accurately specified. Unfortunately, use of the TEIS and Two-Zone models as a predictive tool has been limited because an accurate and broadly applicable method of predicting the modeling parameters, etaA, etaB, chi and d2p does not exist. Empirical models have been developed to predict the TEIS and Two-Zone modeling parameters based on a large database of centrifugal pump and compressor test results. These test data were provided by ConceptsNREC and have been collected over the past 40 years. The database consists of a wide range of machines including some that were designed and tested by ConceptsNREC and others from the open literature. Only cases with a vaneless diffuser or volute have been included in the analysis to avoid any possible impeller-diffuser interactions. From the database, models for all of the TEIS and Two-Zone parameters have been derived using basic regression techniques. Three different models are proposed for each of the two TEIS modeling parameters, etaA and etaB. One model for pumps, another for compressors, and a combined model applicable for all machines is given. For the Two-zone parameters, chi and d2p, a single set of models was developed to represent the design point performance and another showing how chi and d2p vary off-design. The combined models for etaA and EtaB are 30% and 70% more accurate than the current state-of-the-art models, respectively. The new models account for the variance in chi and d2p at off-design flow conditions and further refine the accuracy of the overall prediction by correctly modeling the loss mechanisms in the impeller passage. Validation work has shown that the set of models that predict etaA, etaB, chi and d2p can be solved to consistently produce sensible results and yield a reasonable "blind" prediction of the performance of a wide range of radial compressors and pumps. These models constitute the first broadly applicable method for predicting the required TEIS and Two-Zone variables and are sufficiently accurate to provide initial performance estimates of new impeller designs
70

Simulations of Controlled Fires Using the One-Dimensional Turbulence Model with Application to Fire Spread in Wildland Fires

Monson, Elizabeth Ida 09 April 2012 (has links) (PDF)
The mechanism of flame propagation in fuel beds of wildland fires is important to understand and quantify fire spread rates. Fires spread by radiative and convective heating and often require direct flame contact to achieve ignition. The flame interface in an advancing fire is unsteady and turbulent, making study of intermittent flames in complex fuels difficult. This thesis applies the one-dimensional turbulence (ODT) model to a study of flame propagation by simulating a lab-scale fire representative of the flame interface in a fuel bed and incorporating solid fuel particles into the ODT code. The ODT model is able to resolve individual flames (a unique property of this model) and provide realistic turbulent statistics. ODT solves diffusion-reaction equations on a line-of-sight that is advanced either in time or in one spatial direction (perpendicular to the line-of-sight). Turbulent advection is modeled through stochastic domain mapping processes. A vertical wall fire, in which ethylene fuel is slowly fed through a porous ceramic, is modeled to investigate an unsteady turbulent flame front in a controlled environment. Simulations of this configuration are performed using a spatial formulation of the ODT model, where the ODT line is perpendicular to the wall and is advanced up the wall. Simulations include radiation and soot effects and are compared to experimental temperature data taken over a range of fuel flow rates. Flame structure, velocities, and temperature statistics are reported. The ODT model is shown to capture the evolution of the flame and describe the intermittent properties at the flame edge, though temperature fluctuations are somewhat over predicted. A solid particle devolatilization model was included in the ODT code to study the convective heating of unburnt solid fuels through direct flame contact. Here the particles are treated as sweet gum hardwood and a single-reaction, first order decomposition model is used to simulate the devolatilization rates. Only preliminary results were presented for a simple case, but this extension of the ODT model presents new opportunities for future research.

Page generated in 0.1028 seconds