Spelling suggestions: "subject:"opérateurs dde cauchyriemann"" "subject:"opérateurs dde schliemann""
1 |
Automorphismes réels d'un fibré, opérateurs de Cauchy-Riemann et orientabilité d'espaces de modulesCrétois, Rémi 08 December 2011 (has links) (PDF)
L'ensemble des opérateurs de Cauchy-Riemann réels sur un fibré vectoriel complexe N muni d'une structure réelle cN au-dessus d'une courbe réelle est un espace affine de dimension infinie. L'union des déterminants de ces opérateurs est un fibré en droites réelles au-dessus de cet espace. L'objet de cette thèse est l'étude de l'action des automorphismes du fibré (N, cN) sur les orientations de ce fibré déterminant ainsi que de ses conséquences sur l'orientabilité des espaces de modules de courbes réelles dans une variété symplectique réelle. Nous commençons par interpréter l'action des automorphismes qui induisent l'identité sur le fibré en droites complexes det(N) en termes d'action sur les structures Pin± de la partie réelle de N. Nous remarquons ensuite qu'un automorphisme au-dessus de l'identité agit sur les classes de bordisme de structures Spin réelles de la courbe et nous utilisons cette action afin d'obtenir une description en termes topologiques de l'action sur les orientations du fibré déterminant. Enfin, pour comprendre l'action des automorphismes de (N, cN) qui ne relèvent pas l'identité, nous introduisons la notion de relevé d'un difféomorphisme de la courbe associé à un diviseur compatible avec (N, cN) et nous calculons le signe de l'action d'un tel relevé sur les orientations du fibré déterminant. Dans une dernière partie, nous appliquons les résultats obtenus à l'étude de l'orientabilité des espaces de modules de courbes réelles dans des variétés symplectiques réelles. Nous calculons en particulier la première classe de Stiefel-Whitney de l'espace de modules des courbes réelles dans l'espace projectif complexe de dimension trois.
|
Page generated in 0.0674 seconds