• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improving electricity market efficiency : from market monitoring to reserve allocation

Lee, Yen-Yu, 1984- 12 July 2012 (has links)
This dissertation proposes new methods to improve the efficiency of electricity markets with respect to market monitoring and reserve allocation. We first present new approaches to monitor the level of competition in electricity markets, a critical task for helping the markets function smoothly. The proposed approaches are based on economic principles and a faithful representation of transmission constraints. The effectiveness of the new approaches is demonstrated by examples based on medium- and large-scale electric power systems. We then propose a new system-operation model using stochastic optimization to systematically allocate reserves under uncertainty. This model aims to overcome the difficulties in both system and market operations caused by the integration of wind power, which results in a higher degree of supply uncertainty. The numerical examples suggest that the proposed model significantly lower the operation costs, especially under high levels of wind penetration. / text
2

Alternative Electricity Market Systems for Energy and Reserves using Stochastic Optimization

Wong, Steven January 2005 (has links)
This thesis presents a model that simulates and solves power system dispatch problems utilizing stochastic linear programming. The model features the ability to handle single period, multiple bus, linear DC approximated systems. It determines capacity, energy, and reserve quantities while accounting for N-1 contingency scenarios (single loss of either generator or line) on the network. Market systems applying to this model are also proposed, covering multiple real-time, day-ahead, and hybrid versions of consumer costing, transmission operator payment, and generator remuneration schemes. The model and its market schemes are applied to two test systems to verify its viability: a small 6-bus system and a larger 66-bus system representing the Ontario electricity network.
3

Alternative Electricity Market Systems for Energy and Reserves using Stochastic Optimization

Wong, Steven January 2005 (has links)
This thesis presents a model that simulates and solves power system dispatch problems utilizing stochastic linear programming. The model features the ability to handle single period, multiple bus, linear DC approximated systems. It determines capacity, energy, and reserve quantities while accounting for N-1 contingency scenarios (single loss of either generator or line) on the network. Market systems applying to this model are also proposed, covering multiple real-time, day-ahead, and hybrid versions of consumer costing, transmission operator payment, and generator remuneration schemes. The model and its market schemes are applied to two test systems to verify its viability: a small 6-bus system and a larger 66-bus system representing the Ontario electricity network.
4

Integrating non-dispatchable renewable energy into the South African grid : an energy balancing view / L.K. du Plessis.

Du Plessis, Louis Kemp January 2013 (has links)
The integration of dispatchable renewable energies like biomass, geothermal and reservoir hydro technologies into an electrical network present no greater challenge than the integration of conventional power technologies for which are well understood by Eskom engineers. However, renewable energies that are based on resources that fluctuate throughout the day and from season to season, like wind and solar, introduce a number of challenges that Eskom engineers have not dealt with before. It is current practice for Eskom‟s generation to follow the load in order to balance the demand and supply. Through Eskom‟s load dispatching desk at National Control, generator outputs are adjusted on an hourly basis with balancing reserves making up only a small fraction of the total generation. Through the Integrated Resource Plan for Electricity of 2010, the Department of Energy has set some targets towards integrating renewable energy, including wind and solar generation, into the South African electricity market consequently introducing variability on the supply side. With demand that varies continually, maintaining a steady balance between supply and demand is already a challenging task. When the supply also becomes variable and less certain with the introduction of non-dispatchable renewable energy, the task becomes even more challenging. The aim of this research study is to determine whether the resources that previously helped to balance the variability in demand will still be adequate to balance variability in both demand and supply. The study will only concentrate on variable or non-dispatchable renewable energies as will be added to the South African electrical network according to the first two rounds of the Department of Energy‟s Renewable Energy Independent Power Producer Procurement Programme. This research study only looks into the balancing challenge and does not go into an analysis of voltage stability or network adequacy, both of which warrant in depth analysis. / Thesis (MIng (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2013.
5

Integrating non-dispatchable renewable energy into the South African grid : an energy balancing view / L.K. du Plessis.

Du Plessis, Louis Kemp January 2013 (has links)
The integration of dispatchable renewable energies like biomass, geothermal and reservoir hydro technologies into an electrical network present no greater challenge than the integration of conventional power technologies for which are well understood by Eskom engineers. However, renewable energies that are based on resources that fluctuate throughout the day and from season to season, like wind and solar, introduce a number of challenges that Eskom engineers have not dealt with before. It is current practice for Eskom‟s generation to follow the load in order to balance the demand and supply. Through Eskom‟s load dispatching desk at National Control, generator outputs are adjusted on an hourly basis with balancing reserves making up only a small fraction of the total generation. Through the Integrated Resource Plan for Electricity of 2010, the Department of Energy has set some targets towards integrating renewable energy, including wind and solar generation, into the South African electricity market consequently introducing variability on the supply side. With demand that varies continually, maintaining a steady balance between supply and demand is already a challenging task. When the supply also becomes variable and less certain with the introduction of non-dispatchable renewable energy, the task becomes even more challenging. The aim of this research study is to determine whether the resources that previously helped to balance the variability in demand will still be adequate to balance variability in both demand and supply. The study will only concentrate on variable or non-dispatchable renewable energies as will be added to the South African electrical network according to the first two rounds of the Department of Energy‟s Renewable Energy Independent Power Producer Procurement Programme. This research study only looks into the balancing challenge and does not go into an analysis of voltage stability or network adequacy, both of which warrant in depth analysis. / Thesis (MIng (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2013.

Page generated in 0.1136 seconds