• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3866
  • 443
  • 295
  • 150
  • 142
  • 78
  • 42
  • 28
  • 27
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • Tagged with
  • 6554
  • 2781
  • 2208
  • 1979
  • 1717
  • 1251
  • 1104
  • 906
  • 847
  • 742
  • 552
  • 544
  • 540
  • 535
  • 525
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Two topics in online auctions / 2 topics in online auctions

Beil, Damian January 2003 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2003. / Includes bibliographical references (p. 83-85). / This thesis studies two operations management topics in online auctions, and is divided into two parts. Motivated by the increasing use of ShopBots to scan Internet auctions, the first part of the thesis analytically examines whether or not two competing auctioneers selling the same commodity should share, or pool, some or all of their bidders. Under pooling, the bidding population is represented by three compartments: bidders dedicated to auction 1, bidders dedicated to auction 2, and pooled bidders participating in both auctions simultaneously. Under a bidder strategy shown to induce a Bayesian equilibrium, a closed form expression for the auctioneers' expected revenue under pooling is found, and pooling is recommended where it produces a greater expected revenue than no pooling (i.e., our objective is revenue maximization). Pooling is generally found to be beneficial as long as the two auctions are not too asymmetric and the underlying valuation distribution has certain concavity characteristics. Asymptotic order statistic arguments are used where explicit characterizations are intractable. The second part of the thesis considers a manufacturer who uses a reverse, or procurement, auction to determine which supplier will be awarded a contract. Each bid consists of a price and a set of non-price attributes (e.g., quality, lead time). The manufacturer is assumed to know the suppliers' cost functions (in terms of the non-price attributes). We analyze how the manufacturer chooses a scoring rule (i.e., a function that ranks the bids in terms of the price and non-price attributes) that attempts to maximize his own utility. Under the assumption that suppliers submit their myopic best-response bids (i.e., they choose their minimum-cost bid to achieve any given score), our proposed scoring rule indeed maximizes the manufacturer's utility within the open-ascending format. / (cont.) The analysis reveals connections between the manufacturer's utility maximization problem and various geometric aspects of the manufacturer's utility and the suppliers' cost functions. / by Damian Ronald Beil. / Ph.D.
232

Multi-modal, multi-period, multi-commodity transportation : models and algorithms

Jernigan, Nicholas R. (Nicholas Richard) January 2014 (has links)
Thesis: S.M., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2014. / 33 / "June 2014." Cataloged from PDF version of thesis. / Includes bibliographical references (pages 51-54). / In this paper we present a mixed integer optimization framework for modeling the shipment of goods between origin destination (O-D) pairs by vehicles of different types over a time-space network. The output of the model is an optimal schedule and routing of vehicle movements and assignment of goods to vehicles. Specifically, this framework allows for: multiple vehicles of differing characteristics (including speed, cost of travel, and capacity), transshipment locations where goods can be transferred between vehicles; and availability times for goods at their origins and delivery time windows for goods at their destinations. The model is composed of three stages: In the first, vehicle quantities, by type, and goods are allocated to routes in order to minimize late deliveries and vehicle movement costs. In the second stage, individual vehicles, specified by vehicle identification numbers, are assigned routes, and goods are assigned to those vehicles based on the results of the first stage and a minimization of costs involved with the transfer of goods between vehicles. In the third stage we reallocate the idle time of vehicles in order to satisfy crew rest constraints. Computational results show that provably optimal or near optimal solutions are possible for realistic instance sizes. / by Nicholas R. Jernigan. / S.M.
233

The role of accounting in operations research

Petridis, Marie Elizabeth January 1963 (has links)
Thesis (M.B.A.)--Boston University
234

Multiperiod Optimization Models in Operations Management

Li, Kevin Bozhe 10 April 2019 (has links)
<p> In the past two decades, retailers have witnessed rapid changes in markets due to an increase in competition, the rise of e-commerce, and ever-changing consumer behavior. As a result, retailers have become increasingly aware of the need to better coordinate inventory control with pricing in order to maximize their profitability. This dissertation was motivated by two of such problems facing retailers at the interface between pricing and inventory control. One considers inventory control decisions for settings in which planned prices fluctuate over time, and the other considers pricing of multiple substitutable products for settings in which customers hold inventory as a consequence of stockpiling when promotional prices are offered. </p><p> In Chapter 1, we provide a brief motivation for each problem. In Chapter 2, we consider optimization of procurement and inventory allocation decisions by a retailer that sells a product with a long production lead time and a short selling season. The retailer orders most products months before the selling season, and places only one order for each product due to short product life cycles and long delivery lead times. Goods are initially stored at the warehouse and then sent to stores over the course of the season. The stores are in high-rent locations, necessitating efficient use of space, so there is no backroom space and it is uneconomical to send goods back to the warehouse; thus, all inventory at each store is available for sale. Due to marketing and logistics considerations, the planned trajectory of prices is determined in advance and may be non-monotonic. Demand is stochastic and price-dependent, and independent across time periods. We begin our analysis with the case of a single store. We first formulate the inventory allocation problem given a fixed initial order quantity with the objective of maximizing expected profit as a dynamic program and explain both technical and computational challenges in identifying the optimal policy. We then present two variants of a heuristic based on the notion of equalizing the marginal value of inventory across the time periods. Results from a numerical study indicate that the more sophisticated variant of the heuristic performs well when compared with both an upper bound and an industry benchmark, and even the simpler variant performs fairly well for realistic settings. We then generalize our approaches to the case of multiple stores, where we allow the stores to have different price trajectories. Our numerical results suggest that the performance of both heuristics is still robust in the multiple store setting, and does not suffer from the same performance deterioration observed for the industry benchmark as the number of stores increases or as price differences increase across stores and time periods. For the pre-season procurement problem, we develop a heuristic based on a generalization of the newsvendor problem that accounts for the two-tiered salvage values in our setting, specifically, a low price during end-of-season markdown periods and a very low or zero salvage value after the season has concluded. Results for numerical examples indicate that our modified newsvendor heuristic provides solutions that are as good as those obtained via grid search. </p><p> In Chapter 3, we address a retailer's problem of setting prices, including promotional prices, over a multi-period horizon for multiple substitutable products in the same product category. We consider the problem in a setting in which customers anticipate the retailer's pricing strategy and the retailer anticipates the customers' purchasing decisions. We formulate the problem as a two-stage game in which the profit maximizing retailer chooses prices and the utility maximizing customers respond by making explicit decisions regarding purchasing and consumption, and thus also implicit decisions regarding stockpiling. We incorporate a fairly general reference price formation process that allows for cross-product effects of prices on reference prices. We initially focus on a single customer segment. The representative customer's utility function accounts for the value of consumption of the products, psychological benefit (for deal-seekers) from purchasing at a price below his/her reference price but with diminishing marginal returns, costs of purchases, penalties for both shortages and holding inventory, and disutility for deviating from a consumption target in each period (where applicable). We are the first to develop a model that simultaneously accounts for this combination of realistic factors for the customer, and we also separate the customer's purchasing and consumption decisions. We develop a methodology for solving the customer's problem for arbitrary price trajectories based on a linear quadratic control formulation of an approximation of the customer's utility maximization problem. We derive analytical representations for the customer's optimal decisions as simple linear functions of prices, reference prices, inventory levels (as state variables), and the cumulative aggregate consumption level (as a state variable). (Abstract shortened by ProQuest.) </p><p>
235

Self-Leadership to Servant Leadership| A Metatheoretical Antecedent to Positive Social Change

Carn, Allen L. 10 April 2019 (has links)
<p> A majority of current leadership programs are failing to deliver a comprehensive approach to leadership development by not providing middle and frontline managers the skills to enhance their potential to develop others. In failing to generate a comprehensive system, animosity towards all types of leadership has been festering for over 40 years as first identified by Greenleaf in 1977. The purpose of the study was to establish a link between the theoretical paradigms of servant leadership and self-leadership using the lens of emotional intelligence to generate an integral leadership development framework. The conceptual framework used Goleman et al.&rsquo;s version of emotional intelligence, Spears&rsquo;s model of servant leadership, and Manz&rsquo;s concepts of self-leadership. The research question examined the interrelationship between the three theoretical paradigms and used the analysis to create a theoretical framework. A paradigm and systematic word search phrase yielded an initial sample of 1356 research articles. Using text scrutinization to achieve saturation, I used 342 articles to evaluate the gap between the three theoretical paradigms. The analysis of the secondary data used Edwards&rsquo;s approach to metatheory-building. The results yielded the beginnings of a new theory of self-perpetuating leadership style called sustainable leadership. Also noted based on the literature a serious absence of ethics, morality, or spirituality in leadership development. This study is important because it uses a holistic framework based on development techniques found in three theoretical leadership paradigms to help aspiring leaders to develop others. The positive social change that may result is an improvement in leadership skills, over time, through a comprehensive approach to leadership development for aspiring leaders.</p><p>
236

Modeling reduction of pandemic influenza using pharmaceutical and non pharmaceutical interventions in a heterogeneous population

Teytelman, Anna January 2012 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2012. / Cataloged from PDF version of thesis. / Includes bibliographical references. / In an event of a pandemic influenza outbreak such as the great "Spanish Flu" of 1918 and the more recent 2009-2010 H1N1 "Swine Flu" scare, pharmaceutical as well as non-pharmaceutical resources are limited in availability and effectiveness. In this thesis we apply OR methods to evaluate the effectiveness of such resources and the strategies for reducing the number of infections resulting from an outbreak. In the first half of this work, we focus on epidemiological analysis of influenza modeling in a heterogeneous population. The majority of existing epidemiological literature models influenza spread in a statistically homogeneous population, but the model-based inclusion of heterogeneity by contact rate, susceptibility, and infectivity introduces significant effects on disease progression. We introduce a new discrete-time influenza outbreak model for a heterogeneous population and use it to describe the changes in a population's flu-related characteristics over time. This information allows us to evaluate the effectiveness of different vaccine targeting techniques in achieving herd immunity, that is, the point at which there is no further growth in new infections. In the second half of this work we switch to a practical application of OR methods in a pandemic situation. We evaluate the effectiveness of vaccines administered to US states during the 2009-2010 H1N1 pandemic. Since the US is geographically diverse and large, the outbreak progressed at different rates and started at different times in each individual state. We discuss dynamic, multi-regional, vaccine allocation schemes for large geographical entities that take into account the different conditions of the epidemic in each region and maximize the total effect of available vaccines. In addition, we discuss effective strategies for combining vaccines with non-pharmaceutical interventions such as hand-washing and public awareness campaigns to decrease the strain of an outbreak on the population. / by Anna Teytelman. / Ph.D.
237

Local energy management through mathematical modeling and optimization

Craft David (David Loren), 1973- January 2004 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2004. / Includes bibliographical references (p. 217-223). / (cont.) Extensions to the core TOTEM model include a demand charge model, used for making daily optimal control decisions when the electric bill includes a charge based on the monthly maximum power draw. The problem of heating, ventilation, and air conditioning (HVAC) control is treated separately since it strongly violates TOTEM's linearity assumptions. Nonetheless, we describe a solution approach to the HVAC problem which operates in conjunction with TOTEM. We also provide an analysis of storage suitability in stochastic supply and demand networks. The node-based approach lends itself well to a software system that uses a drag- and-drop graphical network creation tool. We present a graphical user interface, the XML data representation, and the communication links to and from optimization software. / We develop an extensive yet tractable framework for analyzing and optimally controlling local energy networks. A local energy network is any set of generation, storage, and end-use devices existing to provide energy fulfillment to a building, a group of jointly operated buildings, or a village power system. The software developed is called TOTEM for Total Energy Management, and provides hourly (or sub-hourly) control over the flows in such energy networks. TOTEM manages multiple energy flows such as electricity, chilled water, heat, and steam together, since such energies are often coupled, particularly for networks containing cogeneration turbines (which produce electricity and steam) and absorption chillers (which use steam for driving refrigeration turbines). Due to the large number of interconnected devices in such networks, the model is kept as a linear mixed integer program, able to be solved rapidly with off-the-shelf mathematical optimization packages. Certain nonlinearities, for example input-output relationships for generators, are handled in this linear framework with piecewise linear approximations. Modeling flexibility is achieved by taking a node-centric approach. Each device in the network is represented as a node, and depending on each node's set membership, proper constraint and objective equations are written. Given the network, TOTEM uses hourly electricity and fuel pricing, weather, and demand projections to determine the optimal operating and scheduling strategy for the day, in both deterministic and stochastic settings. MIT's cogeneration plant is used as a case study, with other examples throughout the thesis demonstrate the use of TOTEM for assessing and controlling renewable resources, storage options, and / by David Craft. / Ph.D.
238

Approximation algorithms for packing and scheduling problems

Correa, José Rafael, 1975- January 2004 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2004. / Includes bibliographical references (p. 149-161). / In this thesis we consider three combinatorial optimization problems. Specifically, we study packing and scheduling questions of relevance in several areas of operations research, including interconnection networks and switch scheduling, VLSI design, and processor scheduling. The first chapter studies a natural edge-coloring question arising from the problem of scheduling packets through an interconnection network. The theoretical model we consider can be seen as a weighted extension of Konig's theorem that states that the minimum number of colors needed to color all edges of a bipartite graph equals the maximum vertex degree. For the weighted generalization, a longstanding open question is to determine the minimum number of colors as a function of n, the maximum total weight adjacent to any vertex. Our main contribution is to show that 2.557n + o(n) colors are sufficient, improving upon earlier work. In the second chapter, we consider the following variant of the classical bin-packing problem: Place a given list of rectangles into the minimum number of unit square bins. In the restricted case where all rectangles are squares, we design an algorithm with an asymptotic performance guarantee arbitrarily close to optimal. In the general case, we give an algorithm that outputs a near-optimal solution, provided it is allowed to use slightly larger bins. Moreover, we extend these algorithmic ideas to handle a number of multidimensional packing problems, obtaining best-known results for several of these. / (cont.) Finally, in the third chapter, we discuss a standard sequencing problem, namely, scheduling precedence-constrained jobs on a single machine to minimize the sum of weighted completion times. We look at the problem from a polyhedral perspective, obtaining, as one of our main results, a generalization of a classical result by Sidney. This new insight allows us to reason that all known 2-approximation algorithms behave similarly. Furthermore, we present a new integer programming model that suggests a strong connection between the scheduling problem and the vertex cover problem. / by José Rafael Correa. / Ph.D.
239

Pandemic panic : a network-based approach to predicting social response during a disease outbreak / Network-based approach to predicting social response during a disease outbreak

Fast, Shannon M. (Shannon Marie) January 2014 (has links)
Thesis: S.M., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2014. / 85 / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 99-104). / Epidemic trajectories and associated social responses vary widely between populations, with severe reactions sometimes observed. When confronted with fatal or novel pathogens, people exhibit a variety of behaviors from anxiety to hoarding of medical supplies, overwhelming medical infrastructure and rioting. We developed a coupled network approach to understanding and predicting social response to disease spread. We couple the disease spread and panic spread processes and model them through local interactions between agents. The behavioral contagion process depends on the prevalence of the disease, its perceived risk and a global media signal. We verify the model by analyzing the spread of disease and social response during the 2009 H1N1 outbreak in Mexico City, the 2003 SARS and 2009 H1N1 outbreaks in Hong Kong and the 2012-2013 Boston influenza season, accurately predicting population-level behavior. The effect of interventions on the disease spread and social response is explored, and we implement an optimization study to determine the least cost intervention, taking into account the costs of the disease itself, the intervention and the social response. We show that the optimal strategy is dependent upon the relative costs assigned to infection with the disease, intervention and social response, as well as the perceived risk of infection. This kind of empirically validated model is critical to exploring strategies for public health intervention, increasing our ability to anticipate the response to infectious disease outbreaks. / by Shannon M. Fast. / S.M.
240

Analytics for Improved Cancer Screening and Treatment

Silberholz, John January 2015 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2015. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from student-submitted PDF version of thesis. / Includes bibliographical references (pages 139-156). / Cancer is a leading cause of death both in the United States and worldwide. In this thesis we use machine learning and optimization to identify effective treatments for advanced cancers and to identify effective screening strategies for detecting early-stage disease. In Part I, we propose a methodology for designing combination drug therapies for advanced cancer, evaluating our approach using advanced gastric cancer. First, we build a database of 414 clinical trials testing chemotherapy regimens for this cancer, extracting information about patient demographics, study characteristics, chemotherapy regimens tested, and outcomes. We use this database to build statistical models to predict trial efficacy and toxicity outcomes. We propose models that use machine learning and optimization to suggest regimens to be tested in Phase II and III clinical trials, evaluating our suggestions with both simulated outcomes and the outcomes of clinical trials testing similar regimens. In Part II, we evaluate how well the methodology from Part I generalizes to advanced breast cancer. We build a database of 1,490 clinical trials testing drug therapies for breast cancer, train statistical models to predict trial efficacy and toxicity outcomes, and suggest combination drug therapies to be tested in Phase II and III studies. In this work we model differences in drug effects based on the receptor status of patients in a clinical trial, and we evaluate whether combining clinical trial databases of different cancers can improve clinical trial toxicity predictions. In Part III, we propose a methodology for decision making when multiple mathematical models have been proposed for a phenomenon of interest, using our approach to identify effective population screening strategies for prostate cancer. We implement three published mathematical models of prostate cancer screening strategy outcomes, using optimization to identify strategies that all models find to be effective. / by John Silberholz. / Ph. D.

Page generated in 0.1009 seconds