• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Properties Of Light And Heavy Baryons In Light Cone Qcd Sum Rules Formalism

Azizi, Kazem 01 March 2009 (has links) (PDF)
In this thesis, we investigate the masses, form factors and magnetic dipole moments of some light octet, decuplet and heavy baryons containing a single heavy quark in the framework of the light cone QCD sum rules. The magnetic dipole moments can be measured considering radiative transitions within a multiplet or between multiplets. Analyzing the transitions among the baryons and calculating the above mentioned parameters can give us insight into the structure of those baryons. In analyzing the aforementioned processes, the transition form factors play a crucial role. In this thesis, the form factors for these transitions are calculated using the light cone QCD sum rules approach. In the limit when the light quark masses are equal, mu = md = ms, QCD has an SU(3) flavour symmetry which can be used to classify the light baryons. This classification results in the light decuplet, octet and singlet baryons. The baryons containing single heavy quark, on the other hand, can be classified according to the spin of the light degrees of freedom in the heavy quark limit, mQ -&gt / infinity. QCD at low energies, when the baryons are formed, is a non-perturbative theory. Hence, for phenomenology of the baryons, the QCD sum rules as a more powerful non-perturbative approach is used. Understanding the properties of nucleons is one of the main objectives of QCD. To investigate the properties of the nucleons, the axial N-Delta(1232) transition form factors are calculated within the light cone QCD sum rules method. A comparison of our results on those form factors with the predictions of lattice QCD and quark model is presented. The nucleon electromagnetic form factors are also calculated in the same framework using the most general form of the nucleon interpolating current. Using two forms of the distribution amplitudes (DA&rsquo / s), predictions for the form factors are presented and compared with existing experimental data. It is shown that our results describe the existing experimental data remarkably well. Another important property of the baryons is their magnetic moments. The magnetic moments of the heavy Xi_Q (Q = b or c) baryons containing a single charm or bottom quark are calculated within the light cone QCD sum rules approach. A comparison of our results with the predictions of other approaches, such as relativistic and nonrelativistic quark models, hyper central model, Chiral perturbation theory, soliton and skyrmion models is presented. Moreover, inspired by the results of recent experimental discoveries for charm and bottom baryons, the masses and magnetic moments of the heavy baryons with J^2P = 3/2^+ containing a single heavy quark are studied also within the light cone QCD sum rules method. Our results on the masses of heavy baryons are in good agreement with predictions of other approaches, as well as with the existing experimental values. Our predictions on the masses of the states, which are not experimentally discovered yet, can be tested in the future experiments. A comparison of our results on the magnetic moments of these baryons and the hyper central model predictions is also presented.
2

Lokale Algebren und Operatorprodukte am Punkt / Local Algebras and Products of Pointlike Fields

Bostelmann, Henning 01 November 2000 (has links)
No description available.
3

Conductivité pour des fermions de Dirac près d’un point critique quantique

Martin, Simon 08 1900 (has links)
Les matériaux de Dirac constituent une classe intéressante de systèmes pouvant subir une transition de phase quantique à température nulle, lorsqu’un paramètre non-thermique atteint un point critique quantique. À l’approche d’un tel point, les observables physiques sont affectées par les importantes fluctuations thermiques et quantiques. Dans ce mémoire, on utilise des techniques de théorie conforme des champs afin d’étudier le tenseur de conductivité électrique dans des théories en 2 + 1 dimensions contenant des fermions de Dirac près d’un point critique quantique. À basse énergie, ces dernières décrivent de façon adéquate de nombreux matériaux de Dirac ainsi que leur transition de phase quantique. La conductivité est étudiée dans le régime des hautes fréquences, à température non-nulle et lorsque le paramètre non-thermique est près de sa valeur critique. Dans ce projet, l’emphase est mise sur les points critiques quantiques invariants sous la parité et le renversement du temps. Dans ce cas, l’expansion de produit d’opérateurs (Operator product expansion en anglais) ainsi que la théorie des perturbations conforme permettent d’obtenir une expression générale pour l’expansion à grandes fréquences des conductivités longitudinales et transverses (de Hall) lorsque le point critique quantique est déformé par un opérateur scalaire relevant. Grâce à ces dernières, nous sommes en mesure de déduire des règles de somme exactes pour ces deux quantités. À titre d’exemple, nos résultats généraux sont appliqués dans le cadre du modèle interagissant de Gross-Neveu, où nous obtenons l’expansion des deux conductivités ainsi que les règles de somme pour un nombre de saveurs de fermions de Dirac N arbitraire. Ces mêmes expressions sont ensuite obtenues par un calcul explicite à N = infini, permettant la comparaison avec les résultats pour un N quelconque. Par la suite, des résultats généraux similaires sont obtenus dans le cas où le point critique quantique est déformé par un opérateur pseudoscalaire relevant. Ces derniers sont finalement appliqués à une théorie de fermions de Dirac libres perturbée par un terme de masse. / Dirac materials constitute an interesting class of systems that can undergo a quantum phase transition at zero temperature, when a non-thermal parameter reaches a quantum critical point. As we approach such a point, physical observables are altered by the important thermal and quantum fluctuations. In this thesis, conformal field theory techniques are used to study the electrical conductivity tensor in theories with Dirac fermions in 2+1 dimensions close to a quantum critical point. At low energies, these adequately describe various Dirac materials as well as their quantum phase transition. In this project, we focus on theories that have a quantum critical point invariant under parity and time-reversal. In this case, the operator product expansion and conformal perturbation theory allow to obtain a general expression for the large frequency expansion of the longitudinal and transverse (Hall) conductivities when the quantum critical point is deformed by a relevant scalar operator. Using these, we are able to deduce exact sum rules for both quantities. As an example, our general results are applied to the Gross-Neveu model, where we obtain the large frequency expansion for both conductivities and the associated sum rules for an arbitrary number of Dirac fermion flavors N. The same expressions are then obtained by an explicit calculation at N = infinity, allowing to compare with our results for any N. Afterwards, analogous general results are obtained for theories where the quantum critical point is deformed by a relevant pseudoscalar. These are finally applied to a theory of massless free Dirac fermions perturbed by a mass term.

Page generated in 0.123 seconds