Spelling suggestions: "subject:"opisthorchis"" "subject:"opisthobranchs""
1 |
Evolution of the G protein-coupled receptor signaling system : Genomic and phylogenetic analysesKrishnan, Arunkumar January 2015 (has links)
Signal transduction pathways mediated by G protein-coupled receptors (GPCRs) and their intracellular coupling partners, the heterotrimeric G proteins, are crucial for several physiological functions in eukaryotes, including humans. This thesis describes a broad genomic survey and extensive comparative phylogenetic analysis of GPCR and G protein families from a wide selection of eukaryotes. A robust mining of GPCR families in fungal genomes (Paper I) provides the first evidence that homologs of the mammalian families of GPCRs, including Rhodopsin, Adhesion, Glutamate and Frizzled are present in Fungi. These findings further support the hypothesis that all main GPCR families share a common origin. Moreover, we clarified the evolutionary hierarchy by showing for the first time that Rhodopsin family members are found outside metazoan lineages. We also characterized the GPCR superfamily in two important model organisms (Amphimedon queenslandica and Saccoglossus kowalevskii) that belong to different metazoan phyla and which differ greatly in morphological characteristics. Curation of the GPCR superfamily (Paper II) in Amphimedon queenslandica (an important model to understand evolution of animal multicellularity) reveals the presence of four of the five GRAFS families and several other GPCR gene families. However, we find that the sponge GPCR subset is divergent from GPCRs in other studied bilaterian and eumetazoan lineages. Mapping of the GPCR superfamily (Paper III) in a hemichordate Saccoglossus kowalevskii (an essential model to understand the evolution of the chordate body plan) revealed the presence of all major GPCR GRAFS families. We find that S. kowalevskii encodes local expansions of peptide and somatostatin- like GPCRs. Furthermore, we delineate the overall evolutionary hierarchy of vertebrate-like G protein families (Paper IV) and provide a comparative perspective with GPCR repertoires. The study also maps the individual gene gain/loss events of G proteins across holozoans with more expanded invertebrate taxon sampling than earlier reports. In addition, Paper V describes a broad survey of nematode chemosensory GPCR families and provides insights into the evolutionary events that shaped the GPCR mediated chemosensory system in protostomes. Overall, our findings further illustrate the evolutionary hierarchy and the diversity of the major components of the G protein-coupled receptor signaling system in eukaryotes.
|
Page generated in 0.053 seconds