• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of flame spread measurements using the ASTM E 1321 LIFT and a reduced scale adaptation of the cone calorimeter apparatus

Merryweather, Geoffrey James January 2006 (has links)
A full-scale ASTM E 1321 Lateral ignition and Flame Transport (LIFT) apparatus was constructed and compared with a Reduced scale Ignition and Flame spread Test apparatus (RIFT) adaptation of the cone calorimeter in the vertical position. The objective was to find a low cost and simple alternative to the LIFT apparatus for measuring opposed flow flame spread. Ignition tests were conducted using the LIFT, RIFT and ISO 5657 ignitability apparatus and flame spread experiments were conducted in the LIFT and RIFT. Nine different types of timber based products were tested for ignition and flame spread, and Quintiere's flame spread model was applied to the results to obtain material properties, such as thermal inertia, flame spread parameter and the minimum heat flux required for flame spread. These materials included plywood, medium density fibreboard (MDF), hardboard, particle board flooring, Melamine (Melteca) covered MDF, New Zealand Rimu, and Beech and New Zealand grown Macrocarpa and Radiata (Monterey) Pine. Further limited tests were conducted on Melteca covered particle board, and a second brand of particle board. The materials in the RIFT were tried with and without preheating to equilibrium. In addition, a view factor for the RIFT was developed, based on earlier work for the cone calorimeter element. The view factor equation was experimentally tested against measured values, and the calculated value was consistently lower than the experimental values, with similar flux profile. The standard procedure is for the material to be preheated before ignition, so that the surface is at equilibrium. The spread of the flame front past points on the sample surface after ignition is recorded, and from the flame front velocity and the model by Quintiere, material specific properties can be derived. The lack of preheating was found to affect the final results, by reducing the flame spread velocity and increasing the scatter in the experimental results. The RIFT gives comparable results to the same materials tested in the LIFT and to the published literature. The results the flame spread parameter and the minimum flux for flame spread are usually higher for the RIFT against the same material in the LIFT. There proved to be an effective limit on suitable materials able to be successfully tested in the RIFT to those that have a minimum flux for flame spread of less than 7kW/m2, with this limitation is dictated by the flux profile along the sample, and the lower resolution dictated by the smaller size. It is approximately equivalent to a minimum ignition flux of 18kW/m2.

Page generated in 0.0787 seconds