• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical multiple input and multiple output (MIMO) in multimode fibre

Li, Ran January 2013 (has links)
Recently, there has been a dramatic increase in the amount of data transmission within short range local area networks (LAN). Multimode fibre (MMF) is widely used in local area networks because of its coupling and alignment along with the low cost of related components. Graded index MMF has become common due to the reduction in pulse spreading; however, as demands for high bandwidth increase towards a future gigabit rate network, the typical MMF using conventional transmission methods will not be suitable. Meanwhile, this increasing demand for high speed data transmission will soon reach the Shannon capacity limit of single mode fibres. After multiple input and multiple output (MIMO) technology was successfully used in wireless communication, the researcher realised that the same idea could also be applied to an optical fibre network. Optical MIMO techniques are gaining interest in order to create parallel channels over orthogonal modes in a MMF or a few mode fibre (FMF). This approach could lead to a significant increase in the bandwidth distance product and be employed in the next 40Gb/s or even 100Gb/s optical fibre transmission systems. Generally speaking, optical MIMO appears to be the best solution to the bandwidth limitation problem in either short distance MMF or long distance FMF systems. This thesis focuses on designing a simple, cost-effective, and energy efficient optical MIMO system based on MMFs. This proposed system can be realised by combining radial offset launching and annular multi-segment detectors. First, in the initial work, we performed a theoretical and numerical study of the key impairments of MMFs, and the mode propagation in an MMF was analysed mathematically. The variation in electrical field intensity for linearly polarised (LP) modes in the core region of an MMF and the analytical solutions for power coupling coefficients in either radial offset launching or centre launching were presented. In addition, the modal time delays, impulse response, and transfer function were all introduced. Subsequently, the near field intensity pattern (NFP) was simulated at the output facet of the MMF, which indicated that the overall NFP suffered from blurring when it contained mode mixing, and that the intensity pattern was particularly sensitive to the random phase. According to the spatial distribution of the NFP, the annular detector can be exploited more efficiently. All of the results were calculated and plotted using the MATLAB program. Secondly, the optical MIMO model in the multimode fibre was briefly summarised, including the MIMO channel matrix H expression, a mathematical expression of optical MIMO capacity, MIMO channel estimation and an equalization method. Two metrics can be used to characterise the MIMO channel performance: condition number and crosstalk at each receiver. The numerical results demonstrated that the new type of annular multi-segment detector exhibits superior performance compared to the conventional multiple single mode fibre (SMF) detectors, making them attractive for future optical MIMO systems. Finally, the core work of this thesis can be divided into two parts: the modelling of a 10Gb/s intensity modulation direct detection (IM-DD) optical MIMO MMF system; and the modelling of an advanced 10Gb/s coherent differential phase shift keying (DPSK) MIMO FMF system. In both simulation systems, the important transmission parameters of intra-group mode mixing, modal dispersion, chromatic dispersion, and mode attenuation were considered and discussed in detail. In the IM-DD optical MIMO system, the optimization of the transceiver can be based upon the laser spot size and the power flux distribution emitted by the transmitter. Results from the simulation showed that the intra-group mode mixing had a limited impact on system performance, and due to its inability to compensate for linear impairments, the IM-DD optical MIMO was not favourable for long distance transmission systems. Nevertheless, the new type of optical fibre FMF seems to be the most promising candidate for use in long haul transmission systems. Therefore, the well-known DPSK modulation format in conjugation with the coherent detection deployed in FMF was studied. Both heterodyne and intradyne detection schemes were analysed followed by mathematical derivation and numerical simulation; the results illustrated that similar system performances can be achieved in both schemes. Meanwhile, the coherent DPSK simulation results also demonstrated that the linear impairments were almost compensated by the frequency domain MIMO equalization process, which resulted in system performance being independent to transmission distance for up to 10km. This advantage proved that the coherent optical DPSK MIMO system can be employed in long haul networks. As with an IM-DD optical MIMO system, optimization of a coherent MIMO system was also possible. However, in contrast to the optimization of an IM-DD MIMO system, a trade-off had to be made between sufficient spatial diversity at the transceiver and differential modal delay caused by modal dispersion; consequently, the numerical results showed that the proposed coherent optical DPSK MIMO gained reasonable good results without using any active device, such as a spatial light modulator and a mode converter. In conclusion, this proposed optical MIMO system provided easy implementation and integration and is feasible for use in future optical communication systems.
2

MIMO Communication Capacity: Antenna Coupling and Precoding for Incoherent Detection

Bikhazi, Nicolas W. 17 November 2006 (has links) (PDF)
While the capacity of multiple-input multiple-output (MIMO) systems has been explored in considerable detail, virtually all literature on this topic ignores electromagnetic considerations. This dissertation explores electromagnetic effects on the capacity performance of these multi-antenna architectures. Specifically, it examines the impact of superdirectivity for compact antenna arrays, the effect of antenna mutual coupling, and MIMO performance of multi-mode optical fiber with non-linear detection. Superdirectivity can lead to abnormally large capacity bounds in a MIMO communication system, especially when the antennas are placed close together. Because superdirective behavior is difficult to achieve in practice, this work formulates an approach for limiting the impact of superdirectivity by introducing finite ohmic loss into the capacity expressions. Results show that even a small amount of ohmic loss significantly affects the achievable system capacity and suppresses superdirective solutions. This formulation allows a more detailed examination of the capacity of MIMO systems for compact arrays. For channels which do not vary in time, placing antennas closer together generally reduces the system capacity. However, recent work has demonstrated that for a MIMO system operating in a fast fading environment where the transmitter and receiver know the channel covariance information, the capacity increases as antennas are placed near each other due to an increase in spatial correlation. Analysis of this behavior illustrates that when these capacity gains (due to closely spaced antennas) are observed the radiated power is also increased. Constraining the radiated power leads to superdirective solutions in which the ohmic loss constraint developed must be used to properly determine the capacity behavior of this system. Application of this constraint then leads to an optimum antenna spacing in contrast to the findings of previous research which indicate that antennas should be as close together as possible. Additionally, this section provides an analysis regarding the number of spatial modes that can be used for various system configurations. Recent research has shown that it is possible for MIMO communication techniques to be used with multimode optical fibers to increase the available distance-bandwidth. However, implementation of traditional MIMO schemes requires the use of coherent optical detection which can lead to high system complexity and cost. This dissertation proposes a multimode fiber MIMO system architecture which allows simultaneous transmission of unique streams to different users on the same fiber while using incoherent detection with amplitude and phase modulation at the transmitter. The resulting capacity scales nearly linearly with the number of transmitters and receivers. Because the architecture requires channel state information at the transmitter, a training scheme appropriate for use with optical intensity detection is also discussed.

Page generated in 0.0507 seconds