• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical parametric amplification with periodically poled KTiOPO4

Fragemann, Anna January 2005 (has links)
This thesis explores the use of engineered nonlinear crystals from the KTiOPO4 (KTP) family as the gain material in optical parametric amplifiers (OPAs), with the aim to achieve more knowledge about the benefits and limitations of these devices. The work aims further at extending the possible applications of OPAs by constructing and investigating several efficient and well performing amplifiers. An OPA consists of a strong pump source, which transfers its energy to a weak seed beam while propagating through a nonlinear crystal. The crystals employed in this work are members of the KTP family, which are attractive due to their large nonlinear coefficients, high resistance to damage and wide transparency range. The flexibility of OPAs with respect to different wavelength regions and pulse regimes was examined by employing various dissimilar seed and pump sources. The possibility to adapt an OPA to a specific pump and seed wavelength and achieve efficient energy conversion between the beams, originates from quasi-phasematching, which is achieved in periodically poled (PP) nonlinear crystals. Quasi-phasematched samples can be obtained by changing the position of certain atoms in a ferroelectric crystal and thereby reversing the spontaneous polarisation. In this thesis several material properties of PP crystals from the KTP family were examined. The wavelength and temperature dispersion of the refractive index were determined for PP RbTiOPO4, which is essential for future use of this material. Another experiment helped to increase the insight into the volumes close to domain walls in PP crystals Further, several OPAs were built and their ability to efficiently amplify the seed beam without changing its spectral or spatial properties was studied. Small signal gains of up to 55 dB and conversion efficiencies of more than 35 % were achieved for single pass arrangements employing 8 mm long PPKTP crystals. Apart from constructing three setups, which generated powerful nanosecond, picosecond and femtosecond pulses, the possibility to amplify broadband signals was investigated. An increase of the OPA bandwidth by a factor of approximately three was achieved in a noncollinear configuration. / QC 20101013
2

Optical parametric amplification with periodically poled KTiOPO<sub>4</sub>

Fragemann, Anna January 2005 (has links)
<p>This thesis explores the use of engineered nonlinear crystals from the KTiOPO4 (KTP) family as the gain material in optical parametric amplifiers (OPAs), with the aim to achieve more knowledge about the benefits and limitations of these devices. The work aims further at extending the possible applications of OPAs by constructing and investigating several efficient and well performing amplifiers.</p><p>An OPA consists of a strong pump source, which transfers its energy to a weak seed beam while propagating through a nonlinear crystal. The crystals employed in this work are members of the KTP family, which are attractive due to their large nonlinear coefficients, high resistance to damage and wide transparency range. The flexibility of OPAs with respect to different wavelength regions and pulse regimes was examined by employing various dissimilar seed and pump sources.</p><p>The possibility to adapt an OPA to a specific pump and seed wavelength and achieve efficient energy conversion between the beams, originates from quasi-phasematching, which is achieved in periodically poled (PP) nonlinear crystals. Quasi-phasematched samples can be obtained by changing the position of certain atoms in a ferroelectric crystal and thereby reversing the spontaneous polarisation.</p><p>In this thesis several material properties of PP crystals from the KTP family were examined. The wavelength and temperature dispersion of the refractive index were determined for PP RbTiOPO4, which is essential for future use of this material. Another experiment helped to increase the insight into the volumes close to domain walls in PP crystals</p><p>Further, several OPAs were built and their ability to efficiently amplify the seed beam without changing its spectral or spatial properties was studied. Small signal gains of up to 55 dB and conversion efficiencies of more than 35 % were achieved for single pass arrangements employing 8 mm long PPKTP crystals. Apart from constructing three setups, which generated powerful nanosecond, picosecond and femtosecond pulses, the possibility to amplify broadband signals was investigated. An increase of the OPA bandwidth by a factor of approximately three was achieved in a noncollinear configuration.</p>
3

Vysokovýkonný zdroj pikosekundových optických pulzů ve střední infračervené oblasti / High-average power picosecond mid-IR source

Vyvlečka, Michal January 2017 (has links)
1 Title: High-average power picosecond mid-IR source Author: Michal Vyvlečka Department: Department of Chemical Physics and Optics Supervisor: Ing. Ondřej Novák, Ph.D., Hilase centre, Institute of Physics of CAS Abstract: High average power wavelength tunable picosecond mid-IR source based on optical parametric generation (OPG) and optical parametric amplification (OPA) is being developed. The conversion system is pumped by an Yb:YAG thin-disk laser delivering 100 W of average power at 100 kHz repetition rate, 1030 nm wavelength, and 2-3 ps pulse width. Part of this fundamental beam pumps an OPG process in a PPLN crystal. The generated wavelength is determined by PPLN's poling period and temperature. Tunability of the signal wavelength between 1.46 µm and 1.95 µm was achieved, the signal beam of 20 mW was generated at 2 W of pump power, when double pass of the beams through PPLN crystal was used. The corresponding idler wavelengths were in range 2.18-3.50 μm. The signal beam was further amplified by OPA process in two KTP crystals, which was pumped by the fundamental beam. The signal beam was amplified up to 2 W at pumping of 38 W. Tuning of the output wavelength was realized by change of the phase-matching angle in KTP crystals. Tunability between 1.70-1.95 µm for signal and 2.18-2.62 µm for idler was...
4

Modeling Optical Parametric Generation in Inhomogeneous Media

Qvarngård, Daniel January 2019 (has links)
No description available.

Page generated in 0.2475 seconds