• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 31
  • 12
  • 10
  • 10
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tuning mechanisms for quasi-phase-matched optical parametric oscillators

Lee, Chris J., n/a January 2005 (has links)
Several pulsed optical oscillators (OPOs) based on periodically poled lithium niobate (PPLN) and pumped by single longitudinal mode Ti:sapphire lasers have been developed. These OPOs provide access to important spectroscopic regions in the 1 - 5.5 [mu]m region and can be rapidly turned by varying the pump wavelength. Previously many of the OPOs developed to take advantage of PPLN relied on a combination of period selection and temperature tuning and as a result were slow and cumbersome to tune. This problem my be avoided by using tunable pump sources or acoustically induced strain waves. Several candidate OPO pump sources were characterised. These pump sources with themselves pumped by lasers operating at repetition reates of either 1.5 kHz (high repetition rate) or 10Hz (low repetition rate). High repetition rate systems include: a Ti-sapphire laser, injection seeded by a single longitudinal mode diode laser, several coupled cavity Ti:sapphire lasers with bandwidths less than 100 Ghz and Cr:forsterite lasers narrowed by prisms and étalons. The low repetition rate systems were all coupled cavity Ti:sapphire lasers one of which was single and double pass amplified. Of these it was found that only the high repetition rate injection seeded laser and the low repetition Ti:sapphire lasers were suitable as OPO pump sources. OPOs were characterised at high and low repetition rates. The high repetition rate system exhibited a low threshold of oscillation (18.7 [mu]J) and a low overall efficiency (25%) which was thought to be due to the pulse to pulse variability of the Ti:sapphire bandwidth. The tuning range of the OPO was 932 to 1310 nm (signal) and 1.989 [mu]m to 5.281 [mu]m (idler) using multiple poling periods and only 15 nm of pump tuning. OPO oscillation on two separate signals simultaneously was observed. Two separate low repetition rate systems were investigated; the first was tuned from 1200 to 1600 nm (signal) and from 1600 to 2400 nm (idler) on a single poling period with a high absolute efficiency of 35% and a threshold of 180 [mu]J. The second OPO was tuned from 940 to 1220 nm (signal) and 2.2 to 4.3 [mu]m (idler) on a single poling period. The absolute efficiency of the system was 25% and the threshold was 200 [mu]J. OPO oscillation on two separate signals was investigated using an OPO based on grazing incidence configured cavity. It was found that the signals coupled together through Raman transitions present in lithium niobate and that coupling reduced the efficiency of the device as a whole. The affect of an acoustically induced strain field on the optical nonlinearity of tetragonal ferroelectric materials was investigated. It was found that the optical nonlinear coefficient varies linearly with the cell displacement and as the square root of the acoustic power. A crystal designed to implement a quasi phase matched interaction based on this variation is proposed.
2

Fiber optical parametric generation of widely tunable source: continuous-wave to sub-pricosecondregime

Zhou, Yue, 周月 January 2012 (has links)
Optical source generation has attracted significant attention recently, especially in fiber optical communications. Today there is a growing a demand for optical source generation beyond conventional telecommunication wavelength bands. However, high quality and versatile optical source is generally not available over those wavelength bands due to the lack of efficient gain medium. Thanks to fiber optical parametric amplifier (FOPA), which is based on the third order nonlinear susceptibility of optical fibers, offers ultrafast response, wide-gain bandwidth, high gain and large frequency detune from the pump, serves as a promising candidate for signal amplification over those wavelength bands. By using the corresponding fiber optical parametric oscillator (FOPO) configuration, widely tunable source from continuous-wave (CW) to sub-picosecond pulses can be potentially generated to serve different applications from communication to biomedical imaging. In this thesis, we first demonstrate an all-fiber widely-tunable picosecond FOPO using highly-nonlinear fiber (HNLF). The tuning range is as wide as 250 nm, which is higher than previous picosecond FOPOs reported in the 1550-nm region. Second, time-dispersion tuning of the FOPO is investigated with fixed pump wavelength. It is a relatively simple and economic approach, and there will be no filter induced cavity loss. We then describe using FOPO to generated nearly-transform limited sub-picosecond pulses with a 60-nm tuning range. Another FOPO with a tuning range of 440-nm with dispersion-shifted fiber (DSF) as the gain medium is proposed and demonstrated. Compared with FOPOs demonstrated using HNLF as the gain medium, the use of DSF offers two key advantages: a wider tuning range and a narrower linewidth. In addition to picosecond FOPO, CW FOPO is also of great interest in fiber optical communications and biomedical imaging. We also demonstrate an all-fiber CW single-longitudinal-mode (SLM) FOPO with tuning range covers the S and L bands. SLM oscillation with a side-mode suppression ratio greater than 43 dB is achieved, which has been extended to 1-μm region under stable operation. Apart from static tuning, dynamic wavelength tuning of the FOPO is also discussed in this thesis with a cumulative speed exceeds 4,000,000 nm/s, which is higher than previous work reported in wavelength-swept FOPOs. The high-speed swept source would be useful in biomedical imaging and sensing applications. The amplification of the sub-picosecond pulses of the FOPO output is also investigated, for the first time to our knowledge, by using a fiber optical parametric chirped pulse amplifier(FOPCPA).The totally fiber-integrated nature of the whole system allows complete self-alignment and further integration to other fiber-based systems. All these research effort will show the versatility of FOPO techniques for generating wide range of optical sources for varies applications. These schemes may be useful in generating CW and short pulse for potential optical communication and biomedical imaging in non-conventional wavelength bands. / published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
3

Non-linear frequency conversion of diode-pumped, all-solid-state lasers

Hall, Gavin John January 1998 (has links)
No description available.
4

Dynamics and stability of periodic spatial patterns in the optical parametric oscillator /

Hewitt, Sarah Elaine. January 2004 (has links)
Thesis (Ph. D.)--University of Washington, 2004. / Vita. Includes bibliographical references (p. 92-95).
5

Control and measurement of ultrafast pulses for pump/probe-based metrology /

Harper, Matthew R. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, October 2007.
6

Continuously frequency-tunable CW optical parametric oscillators and their application to spectroscopy

Gibson, Graham Martin January 1999 (has links)
This thesis describes the development and applications of single-frequency, continuously tunable, continuous-wave (cw), optical parametric oscillators (OPOs). Two doubly-resonant OPOs (DROs) are presented, one providing tunable light around 1?m, the other specifically designed as a spectroscopic source for methane near 1649nm. Once stabilised, the frequency-selective nature of the DRO ensures operation on a single mode-pair without the need for additional intracavity frequency-selective components. Both DROs are smoothly tunable by smoothly tuning the pump laser. The 1mum DRO is based on a bulk KTP crystal cut for near-degenerate, type-II, critical phase-matching (theta= 90°, ϕ = 37°). Angle tuning the crystal provides coarse tuning of the output frequencies over a range of ~50nm. Small perturbations to the OPO cavity is sufficient to cause a systematic mode-hop and provides a method of tuning across the phase-matching bandwidth (~0.5THz). This DRO is demonstrated as a spectroscopic source by recording the absorption spectrum of cesium molecules near 1050nm. The DRO as a potentially compact source of tunable light is demonstrated by using a frequency-doubled microchip laser as the pump source. The output consists of a single pair of signal and idler modes even when using a multilongitudinal-mode pump laser. Smooth tuning of the output frequencies is achieved by temperature tuning the pump laser. The 1.65mum DRO is based on periodically poled KTiOPO4 (PPKTP). The suitability of PPKTP for cw OPOs was first assessed by a difference frequency generation experiment from which the effective d33 coefficient was estimated to be ~5mum/V. The idler wavelength is coarsely tuned at a rate of 0.73nm/°C by varying the crystal temperature. A combination of computer modelling and experimental observation is used to study the dynamic behaviour of a DRO. The numerical model calculates the time required for the OPO to build-up from the parametric fluorescence and is in excellent agreement with experimental observations.
7

High spatial and spectral quality diode-laser-based pump sources for solid-state lasers and optical parametric oscillators

Lindsay, Ian D. January 1999 (has links)
In this thesis the use of high spatial- and spectral-quality diode-laser pump sources for solid-state lasers and continuous-wave optical parametric oscillators (cw OPOs) is investigated. While diode lasers are potentially attractive, compact, low-cost pump sources for solid-state lasers and cw OPOs, the difficulty in obtaining moderate output powers, while retaining high spatial beam quality and spectral purity, often limits the potential of such lasers in these applications. Techniques for obtaining high-power, high spatial- and spectral-quality output from diode lasers are reviewed and the design, development and characterisation of an injection-locked broad-area diode-laser system is described. This system produced output powers of &ap;400mW in a near-diffraction-limited beam (M2&ap;w1.3) and with a spectral width of < 30MHz. The injection-locked system was used as the pump source for a quasi-three-level 946-nm Nd:YAG laser. End-pumped solid-state lasers of this type can offer potentially efficient, low-threshold operation if a near-diffraction limited pump source is used allowing optimal overlap with the laser mode. A model, including pump beam quality effects, is developed for such lasers and used to highlight the advantages of a near- diffraction-limited pump source, especially in the case of the 946-nm Nd:YAG transition which suffers from low gain and significant reabsorption losses. A 946-nm Nd: YAG laser pumped by the injection-locked system is described, yielding cw output powers up to 120mW with a 46% slope efficiency, performance comparable to Ti:sapphire- or dye-laser pumping, and 27ns Q-switched pulses having peak powers of 180W. 50W, 20ns pulses at 473nm were obtained by second-harmonic generation in KNbOs. The performance and relative merits of various cw OPO configurations, in the context of diode-laser pumping, are discussed and the development of a doubly- resonant OPO (DRO) based on periodically-poled lithium niobate is described. When pumped by the injection-locked system, this device showed a threshold of 25mW and .tuning of the outputs over 1.15- 1.25 mum at the signal and 2.3-2.65 mum at the idler was obtained by variation of crystal temperature, PPLN grating period and pump wavelength. When pumping with a 100mW single-mode diode laser, a 15mW OPO threshold was observed while retaining a similar tuning range. This represented the first demonstration of a cw DRO directly pumped by a single-mode diode laser. The achievement of such spectral coverage while pumping with this source points to the potential of such systems as compact, tunable sources in the near-to mid-infrared.
8

Femtosecond optical parametric oscillators in the mid-infrared

Penman, Zoe E. January 1999 (has links)
The work described in this thesis is concerned with the development of self-modelocked Ti:sapphire lasers and femtosecond optical parametric oscillators based on periodically-poled rubidium titanyl arsenate and periodically-poled lithium niobate and operating in the near and mid-infrared. In Chapter 1 the theory of ultrashort pulse generation is explained with regard to the Ti:sapphire laser. The optical properties of Ti:sapphire are discussed along with the principles of laser oscillation and pulse generation. The techniques used to modelock the lasers used in the experimental work, which follows, are also considered. The second part of the chapter deals with typical measurement techniques for characterising femtosecond optical pulses from a laser or an OPO, including a detailed explanation of second harmonic generation autocorrelation. Chapter 1 concludes with a thorough description of frequency-resolved optical gating, the newest of these pulse characterisation techniques. In Chapter 2 the subject of nonlinear optics and the properties of nonlinear optical materials are discussed. Phasematching in nonlinear optical materials is explained along with the principle techniques for achieving this, including birefringent phasematching and quasi-phasematching. A review of techniques for periodically- poling nonlinear optical crystals is also given. The chapter concludes with a section on the optical effects of group velocity dispersion and self-phase modulation, that influence the output from an ultrashort pulse laser or OPO and describes methods for second and third-order dispersion compensation. Chapter 2 concludes the theory required to explain the experiments described in Chapters 3, 4, 5 and 6. Chapter 3 describes the operation and characterisation of two different Ti:sapphire laser systems involving different methods of dispersion compensation. The first laser produces 100 fs duration self-modelocked laser pulses and dispersion compensation is achieved by including a pair of prisms in the cavity. This laser system is discussed further in Chapter 5, where it is operated in conjunction with a Spectra Physics Millennia, as the pump source for an all-solid-state femtosecond OPO based on periodically-poled lithium niobate. A second laser system is described in Chapter 3, which produces self-modelocked pulses of ~15 fs duration and dispersion compensation is achieved by including chirped multilayer dielectric mirrors in the cavity. The subject matter that Chapter 4 is concerned with includes the operation and characterisation of a femtosecond OPO based on PPRTA. Ti:sapphire pump wavelength tuning and cavity-length tuning of the OPO are shown to produce wavelengths throughout the range 1.060 mum to 1.225 mum in the signal and 2.67 jam to 4.5 mum in the idler, with average output powers as high as 120 mW in the signal and 105 mW in the idler output. The effects of photorefractive damage are minimal and consequently this offers the possibility of room-temperature operation of the PPRTA- based OPO. Chapter 5 is concerned with the generation of longer idler wavelengths, in the region of 5 mum, from an all-solid-state OPO based on periodically-poled lithium niobate. The approach used with the PPRTA-based OPO is extended to PPLN and in Chapter 5, results are presented which show that the use of an all-solid-state Ti:sapphire pump source in combination with a PPLN-based OPO represents a robust source of high- repetition-rate femtosecond pulses in the mid-infrared at wavelengths out to ~5 mum. Significantly higher output powers in the signal and idler than previously reported are also measured. In Chapter 6 a similar PPLN-based OPO is described, with modifications to the cavity elements, to reduce the output pulse duration of the OPO. This system is pumped by a sub- 20 fs Ti:sapphire laser. A pulse duration of 175 fs is recorded for the signal at a wavelength of 1.07 mum. Output powers of 28 mW for the signal at 1.07 mum and 6.8 mW for the idler at 2.7 mum are also measured. The tuning range for the signal extends from 1.045 mum to 1.190 mum, and for the idler, extends from 2.57 mum to 3.67 mum.
9

UV pumped holosteric optical parametric oscillator

Cui, Yong January 1993 (has links)
The all-solid-state (or "holosteric") optical parametric oscillator has resulted from the recent development of diode-laser-pumped solid-state lasers and from recent advancements in new optically nonlinear materials. As a result, all-solid-state sources of widely tunable (ultraviolet - visible - near infrared) coherent radiation are now possible by using the radiation from diode-laser-pumped solid-state lasers, either directly or after frequency conversion, to pump optical parametric oscillators. Such devices can be made compact, efficient and reliable. The work described in this thesis explores the feasibility of obtaining widely tunable radiation from such devices, with particular reference to low threshold, high efficiency operation, so requiring only modest energies (1 mJ in ultraviolet) from the pump source. In particular, a frequency tripled or frequency quadruped Nd:YAG laser pumped by pulsed, GaAlAs diode laser bars has been used as the pump source, and lithium triborate has been used as the nonlinear medium in the optical parametric oscillator. Two geometries of lithium triborate crystals have been investigated as the nonlinear medium. One was cut for a type II non-critical phase matching geometry, while the other was cut for a type I critical phase matching geometry. The oscillator cavities were designed for optimum focusing and mode matching aiming for operation with a low pump energy through the use of tightly focused pump radiation. The ultraviolet pump source was based on a Q-switched diode-laser-pumped Nd:YAG laser which generated pulses at 1.064 mum with energy 10 mJ and duration around 10 ns. These were then frequency up-converted to the UV at 355 nm or 266 nm, so as to be suitable for pumping the parametric oscillators. Generally, an overall conversion efficiency from 1.064 mum to 355 nm of >30% was obtained using the nonlinear materials potassium titanyl phosphate and lithium triborate for second harmonic generation and sum-frequency mixing respectively. For conversion to 266 nm, an overall efficiency of > 18 % was obtained using the nonlinear materials KTP and BBO for two step second harmonic generation. In the experimental investigations of the all-solid-state lithium triborate optical parametric oscillator pumped at 355 nm a low oscillation threshold was obtained in the type II non-critical phase matching geometry (around 0.2 mJ) and pump depletions of 50 % were obtained at around six times threshold. This device could be temperature tuned (20 - 200 &deg;C) from 457 to 481 nm (signal wave) and 1.6 to 1.35 mum (idler wave). Optimised focusing conditions corresponding to the theory of Guha et al were approached in the type I phase matching geometry, and despite the existence of a 1&deg; walkoff angle, the minimum oscillation threshold was measured to be around 0.3 mJ. Generally, pump depletions of about 35 % were obtained, at around four times threshold. These devices could be angle tuned (through crystal internal angle 14&deg;) from 457 to 666 nm (signal wave) and 1.6 mum to 768 nm (idler wave). (The whole of the range 420 nm to 2.3 mum could be covered with such a device given additional mirror sets). The all-solid-state type II geometry lithium triborate optical parametric oscillator was also pumped at 266 nm, when it was temperature tunable (20 - 200 &deg;C) from 306 to 314 nm (signal wave) and 2.03 to 1.75 mum (idler wave). Pump depletions of 25 % were demonstrated with this device at pump energies of four times threshold. In addition to the above experimental investigations, the thesis addresses the issues of (i) choice of nonlinear material for optical parametric oscillators in terms of appropriate figures of merit, and (ii) optimisation of pump and resonated wave focusing parameters. Reviews of the appropriate theoretical background to phase matching geometries and optical parametric interaction are included.
10

Studies of optical parametric oscillators for the ultraviolet and visible spectral regions

Henderson, Angus January 1993 (has links)
The work described herein concerns the characterisation and development of optical parametric oscillators (OPOs) tunable in the ultraviolet, visible and near infrared regions. These devices were pumped by the 308nm output from line-narrowed Xenon Chloride excimer lasers of pulse energy up to 150mJ. The behaviour of Type 2 phase-matched Urea, and Type 1 phase-matched Barium Borate OPOs in terms of oscillation threshold and conversion efficiency, has been explored. The detrimental effects of pump beam walkoff on the threshold of the critically phase-matched Barium Borate OPO have been quantified. It was found that minimum 17ns pulse energies of 5mJ were required to reach threshold in a device based on a crystal of 20mm length. By contrast, noncritically phase-matched Urea OPOs using crystal lengths of 25mm were operated with as little as 0.6mJ pump energy. A deterioration in performance was observed in both cases with decreasing pump beam waist. Maximum pump depletions of 72% and 64% were observed in Urea and BBO respectively. The useful output from the urea device reached 65%, while higher absorption/scattering losses meant that the useful fraction in BBO was very much lower. Two different types of noncollinear phase-matching were studied in the BBO-OPO. The first recorded observation of operation of a Type 1 OPO at crystal angles beyond the degenerate wavelength point was made. The output took the form of two concentric rings and was attributed to simultaneous singly and doubly resonant operation. Finally, single longitudinal mode operation of the BBO-OPO was demonstrated using a dispersive cavity arrangement. The widely varying inherent linewidth of the device required that different strategies be adopted over different wavelength ranges. Encouraging performance in terms of threshold was observed using the dispersive cavity, and the feasibility of using this device as a low-power first stage for an oscillator/amplifier set-up was studied.

Page generated in 0.1113 seconds