• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Verification of hybrid operation points

Dunbäck, Otto, Gidlöf, Simon January 2009 (has links)
<p>This thesis is an approach to improve a two-mode hybrid electric vehicle, which is currently under development by GM, with respect to fuel consumption. The study is not only restricted to the specific two-mode HEV but also presents results regarding parallel as well as serial HEV’s. GM whishes to verify if the online-based controller in the prototype vehicle utilizes the most of the HEV ability and if there is more potential to lower the fuel consumption. The purpose is that the results and conclusions from this work are to be implemented in the controller to further improve the vehicle’s performance. To analyze the behavior of the two-mode HEV and to see where improvements can be made, models of its driveline and components are developed with a focuson losses and efficiency. The models are implemented in MATLAB together with an optimization algorithm based on Dynamic Programming. The models are validated against data retrieved from the prototype vehicle and various cases with different inputs is set up and optimized over the NEDC cycle. Compensation for cold starts and NOx emissions are also implemented in the final model. Deliberate simplifications are made regarding the modeling of the power split’s functionality due to the limited amount of time available for this thesis. The optimizations show that there is potential to lower the fuel consumptionfor the two-mode HEV. The results are further analyzed and the behavior of the engine, motors/generators and battery are compared with recorded data from a prototype vehicle and summarized to a list of suggestions to improve fuel economy.</p>
2

Verification of hybrid operation points

Dunbäck, Otto, Gidlöf, Simon January 2009 (has links)
This thesis is an approach to improve a two-mode hybrid electric vehicle, which is currently under development by GM, with respect to fuel consumption. The study is not only restricted to the specific two-mode HEV but also presents results regarding parallel as well as serial HEV’s. GM whishes to verify if the online-based controller in the prototype vehicle utilizes the most of the HEV ability and if there is more potential to lower the fuel consumption. The purpose is that the results and conclusions from this work are to be implemented in the controller to further improve the vehicle’s performance. To analyze the behavior of the two-mode HEV and to see where improvements can be made, models of its driveline and components are developed with a focuson losses and efficiency. The models are implemented in MATLAB together with an optimization algorithm based on Dynamic Programming. The models are validated against data retrieved from the prototype vehicle and various cases with different inputs is set up and optimized over the NEDC cycle. Compensation for cold starts and NOx emissions are also implemented in the final model. Deliberate simplifications are made regarding the modeling of the power split’s functionality due to the limited amount of time available for this thesis. The optimizations show that there is potential to lower the fuel consumptionfor the two-mode HEV. The results are further analyzed and the behavior of the engine, motors/generators and battery are compared with recorded data from a prototype vehicle and summarized to a list of suggestions to improve fuel economy.

Page generated in 0.0793 seconds