• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data Filtering and Control Design for Mobile Robots

Karasalo, Maja January 2009 (has links)
In this thesis, we consider problems connected to navigation and tracking for autonomousrobots under the assumption of constraints on sensors and kinematics. We study formation controlas well as techniques for filtering and smoothing of noise contaminated input. The scientific contributions of the thesis comprise five papers.In Paper A, we propose three cascaded, stabilizing formation controls for multi-agent systems.We consider platforms with non-holonomic kinematic constraints and directional rangesensors. The resulting formation is a leader-follower system, where each follower agent tracksits leader agent at a specified angle and distance. No inter-agent communication is required toexecute the controls. A switching Kalman filter is introduced for active sensing, and robustnessis demonstrated in experiments and simulations with Khepera II robots.In Paper B, an optimization-based adaptive Kalman filteringmethod is proposed. The methodproduces an estimate of the process noise covariance matrix Q by solving an optimization problemover a short window of data. The algorithm recovers the observations h(x) from a system˙ x = f (x), y = h(x)+v without a priori knowledge of system dynamics. The algorithm is evaluatedin simulations and a tracking example is included, for a target with coupled and nonlinearkinematics. In Paper C, we consider the problem of estimating a closed curve in R2 based on noisecontaminated samples. A recursive control theoretic smoothing spline approach is proposed, thatyields an initial estimate of the curve and subsequently computes refinements of the estimateiteratively. Periodic splines are generated by minimizing a cost function subject to constraintsimposed by a linear control system. The optimal control problem is shown to be proper, andsufficient optimality conditions are derived for a special case of the problem using Hamilton-Jacobi-Bellman theory.Paper D continues the study of recursive control theoretic smoothing splines. A discretizationof the problem is derived, yielding an unconstrained quadratic programming problem. Aproof of convexity for the discretized problem is provided, and the recursive algorithm is evaluatedin simulations and experiments using a SICK laser scanner mounted on a PowerBot from ActivMedia Robotics. Finally, in Paper E we explore the issue of optimal smoothing for control theoretic smoothingsplines. The output of the control theoretic smoothing spline problem is essentially a tradeoff between faithfulness to measurement data and smoothness. This tradeoff is regulated by the socalled smoothing parameter. In Paper E, a method is developed for estimating the optimal valueof this smoothing parameter. The procedure is based on general cross validation and requires noa priori information about the underlying curve or level of noise in the measurements. / QC 20100722
2

Multivariate EWMA Control Chart and Application to a Semiconductor Manufacturing Process

Huh, Ick 09 1900 (has links)
<p>The multivariate cumulative sum (MCUSUM) and the multivariate exponentially weighted moving average (MEWMA) control charts are the two leading methods to monitor a multivariate process. This thesis focuses on the MEWMA control chart. Specifically, using the Markov chain method, we study in detail several aspects of the run length distribution both for the on- and off- target cases. Regarding the on-target run length analysis, we express the probability mass function of the run length distribution, the average run length (ARL), the variance of run length (V RL) and higher moments of the run length distribution in mathematically closed forms. In previous studies, with respect to the off-target performance for the MEWMA control chart, the process mean shift was usually assumed to take place at the beginning of the process. We extend the classical off-target case and introduce a generalization of the probability mass function of the run length distribution, the ARL and the V RL. What Prabhu and Runger (1996) proposed can be derived from our new model. By evaluating the off-target ARL values for the MEWMA control chart, we determine the optimal smoothing parameters by using the partition method that provides an easy algorithm to find the optimal smoothing parameters and study how they respond as the process mean shift time changes. We compare the ARL performance of the MEWMA control chart with that of the multivariate Shewhart control chart to see whether the MEWMA chart is still effective in detecting a small mean shift as the process mean shift time changes. In order to apply the model to semiconductor manufacturing processes, we use a bivariate normal distribution to generate sample data and compare the MEWMA control chart with the multivariate Shewhart control chart to evaluate how the MEWMA control chart behaves when a delayed mean shift happens. We also apply the variation transmission model introduced by Lawless et al. (1999) to the semiconductor manufacturing process and show an extension of the model to make our application to semiconductor manufacturing processes more realistic. All the programming and calculations were done in R</p> / Master of Science (MS)

Page generated in 0.0788 seconds