• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Graph-based segmentation of lymph nodes in CT data

Wang, Yao 01 December 2010 (has links)
The quantitative assessment of lymph node size plays an important role in treatment of diseases like cancer. In current clinical practice, lymph nodes are analyzed manually based on very rough measures of long and/or short axis length, which is error prone. In this paper we present a graph-based lymph node segmentation method to enable the computer-aided three-dimensional (3D) assessment of lymph node size. Our method has been validated on 111 cases of enlarged lymph nodes imaged with X-ray computed tomography (CT). For unsigned surface positioning error, Hausdorff distance and Dice coefficient, the mean was around 0.5 mm, under 3.26 mm and above 0.77 respectively. On average, 5.3 seconds were required by our algorithm for the segmentation of a lymph node.
2

Graph-based segmentation of the pediatric trachea in MR images to model growth

Amendola, Richard Lee 01 May 2012 (has links)
The upper airways are a major site of pediatric airway obstruction with its accompanying morbidity and mortality. The simplest approach to provide a stable airway is to perform a tracheotomy but it is a long recovery with its own complications. Other surgical procedures to reconstruct the airway require significant experience. The long-term objectives of this project are to develop a greater understanding of congenital abnormalities of the larynx and trachea. The objective of this thesis is to create a process to automatically segment and measure the pediatric trachea from MR images. Using 3DSlicer and ITK and program was created to perform the measurements. The software tool was optimized to produce similar results to that of CT image measurements from Pulmonary Workstation. The program was tested on a pediatric population and showed a significant correlation between cross-sectional area and age or height of the individual.
3

Automated and interactive approaches for optimal surface finding based segmentation of medical image data

Sun, Shanhui 01 December 2012 (has links)
Optimal surface finding (OSF), a graph-based optimization approach to image segmentation, represents a powerful framework for medical image segmentation and analysis. In many applications, a pre-segmentation is required to enable OSF graph construction. Also, the cost function design is critical for the success of OSF. In this thesis, two issues in the context of OSF segmentation are addressed. First, a robust model-based segmentation method suitable for OSF initialization is introduced. Second, an OSF-based segmentation refinement approach is presented. For segmenting complex anatomical structures (e.g., lungs), a rough initial segmentation is required to apply an OSF-based approach. For this purpose, a novel robust active shape model (RASM) is presented. The RASM matching in combination with OSF is investigated in the context of segmenting lungs with large lung cancer masses in 3D CT scans. The robustness and effectiveness of this approach is demonstrated on 30 lung scans containing 20 normal lungs and 40 diseased lungs where conventional segmentation methods frequently fail to deliver usable results. The developed RASM approach is generally applicable and suitable for large organs/structures. While providing high levels of performance in most cases, OSF-based approaches may fail in a local region in the presence of pathology or other local challenges. A new (generic) interactive refinement approach for correcting local segmentation errors based on the OSF segmentation framework is proposed. Following the automated segmentation, the user can inspect the result and correct local or regional segmentation inaccuracies by (iteratively) providing clues regarding the location of the correct surface. This expert information is utilized to modify the previously calculated cost function, locally re-optimizing the underlying modified graph without a need to start the new optimization from scratch. For refinement, a hybrid desktop/virtual reality user interface based on stereoscopic visualization technology and advanced interaction techniques is utilized for efficient interaction with the segmentations (surfaces). The proposed generic interactive refinement method is adapted to three applications. First, two refinement tools for 3D lung segmentation are proposed, and the performance is assessed on 30 test cases from 18 CT lung scans. Second, in a feasibility study, the approach is expanded to 4D OSF-based lung segmentation refinement and an assessment of performance is provided. Finally, a dual-surface OSF-based intravascular ultrasound (IVUS) image segmentation framework is introduced, application specific segmentation refinement methods are developed, and an evaluation on 41 test cases is presented. As demonstrated by experiments, OSF-based segmentation refinement is a promising approach to address challenges in medical image segmentation.

Page generated in 0.0585 seconds