• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Algorithm for Optimal Triangulations in Scattered Data Representation and Implementation

Dyer, Bradley W., Hong, Don 01 January 2003 (has links)
Scattered data collected at sample points may be used to determine simple functions to best fit the data. An ideal choice for these simple functions is bivariate splines. Triangulation of the sample points creates partitions over which the bivariate splines may be defined. But the optimality of the approximation is dependent on the choice of triangulation. An algorithm, referred to as an Edge Swapping Algorithm, has been developed to transform an arbitrary triangulation of the sample points into an optimal triangulation for representation of the scattered data. A Matlab package has been completed that implements this algorithm for any triangulation on a given set of sample points.
2

Optimal area triangulation

Vassilev, Tzvetalin Simeonov 23 August 2005
Given a set of points in the Euclidean plane, we are interested in its triangulations, i.e., the maximal sets of non-overlapping triangles with vertices in the given points whose union is the convex hull of the point set. With respect to the area of the triangles in a triangulation, several optimality criteria can be considered. We study two of them. The MaxMin area triangulation is the triangulation of the point set that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. In the case when the point set is in a convex position, we present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in $O(n^2log{n})$ time and $O(n^2)$ space. These algorithms are based on dynamic programming. They use a number of geometric properties that are established within this work, and a variety of data structures specific to the problems. Further, we study polynomial time computable approximations to the optimal area triangulations of general point sets. We present geometric properties, based on angular constraints and perfect matchings, and use them to evaluate the approximation factor and to achieve triangulations with good practical quality compared to the optimal ones. These results open new direction in the research on optimal triangulations and set the stage for further investigations on optimization of area.
3

Optimal area triangulation

Vassilev, Tzvetalin Simeonov 23 August 2005 (has links)
Given a set of points in the Euclidean plane, we are interested in its triangulations, i.e., the maximal sets of non-overlapping triangles with vertices in the given points whose union is the convex hull of the point set. With respect to the area of the triangles in a triangulation, several optimality criteria can be considered. We study two of them. The MaxMin area triangulation is the triangulation of the point set that maximizes the area of the smallest triangle in the triangulation. Similarly, the MinMax area triangulation is the triangulation that minimizes the area of the largest area triangle in the triangulation. In the case when the point set is in a convex position, we present algorithms that construct MaxMin and MinMax area triangulations of a convex polygon in $O(n^2log{n})$ time and $O(n^2)$ space. These algorithms are based on dynamic programming. They use a number of geometric properties that are established within this work, and a variety of data structures specific to the problems. Further, we study polynomial time computable approximations to the optimal area triangulations of general point sets. We present geometric properties, based on angular constraints and perfect matchings, and use them to evaluate the approximation factor and to achieve triangulations with good practical quality compared to the optimal ones. These results open new direction in the research on optimal triangulations and set the stage for further investigations on optimization of area.

Page generated in 0.1483 seconds