1 |
Étude de la Distribution, sur Système à Grande Échelle, de Calcul Numérique Traitant des Matrices Creuses CompresséesHamdi-Larbi, Olfa 27 March 2010 (has links) (PDF)
Plusieurs applications scientifiques effectuent des calculs sur des matrices creuses de grandes tailles. Pour des raisons d'efficacité en temps et en espace lors du traitement de ces matrices, elles sont stockées selon des formats compressés adéquats. D'un autre coté, la plupart des calculs scientifiques creux se ramènent aux deux problèmes fondamentaux d'algèbre linéaire i.e. la résolution de systèmes linéaires et le calcul d'éléments (valeurs/vecteurs) propres de matrices. Nous étudions dans ce mémoire la distribution, au sein d'un Système Distribué à Grande Echelle (SDGE), des calculs dans des méthodes itératives de résolution de systèmes linéaires et de calcul d'éléments propres et ce, dans le cas creux. Le produit matricevecteur creux (PMVC) constitue le noyau de base pour la plupart de ces méthodes. Notre problématique se ramène en fait à l'étude de la distribution du PMVC sur un SDGE. Généralement, trois étapes sont nécessaires pour accomplir cette tâche, à savoir, (i) le prétraitement, (ii) le traitement et (iii) le post-traitement. Dans la première étape, nous procédons d'abord à l'optimisation de quatre versions de l'algorithme du PMVC correspondant à quatre formats de compression spécifiques de la matrice, puis étudions leurs performances sur des machines cibles séquentielles. Nous nous focalisons de plus sur l'étude de l'équilibrage des charges pour la distribution des données traitées (se ramenant en fait aux lignes de la matrice creuse) sur un SDGE. Concernant l'étape de traitement, elle a consisté à valider l'étude précédente par une série d'expérimentations réalisées sur une plate-forme gérée par l'intergiciel XtremWeb-CH. L'étape de post-traitement, quant à elle, a consisté à analyser et interpréter les résultats expérimentaux obtenus au niveau de l'étape précédente et ce, afin d'en tirer des conclusions adéquates.
|
Page generated in 0.0804 seconds