• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Paramétrisation et optimisation sans dérivées pour le problème de calage d’historique / Parametrization and derivative free optimization for the history matching problem

Marteau, Benjamin 04 February 2015 (has links)
Dans cette thèse, on s’intéresse à un problème inverse classique en ingénierie pétrolière, àsavoir le calage d’historique. Plus précisément, une nouvelle méthode de paramétrisation géostatistiqueainsi qu’un nouvel algorithme d’optimisation sans dérivées adaptés aux particularitésdu problème sont présentés ici. La nouvelle méthode de paramétrisation repose sur les principes des méthodes de déformation graduelle et de déformation de domaines. Comme la déformation graduelle locale, elle consiste àcombiner à l’intérieur de zones préalablement définies deux réalisations ou plus de modèle avec lapossibilité supplémentaire de modifier dynamiquement la forme des zones choisies. La flexibilitéapportée par cette méthode dans le choix des zones a ainsi permis de garantir l’obtention d’unbon point initial pour l’optimisation. Concernant l’optimisation, l’hypothèse que les paramètres locaux dans le modèle de réservoir n’influent que faiblement sur les données de puits distants conduit à considérer que la fonction àoptimiser est à variables partiellement séparables. La nouvelle méthode d’optimisation développée,nommée DFO-PSOF, de type région de confiance avec modèle quadratique d’interpolation,exploite alors au maximum cette propriété de séparabilité partielle. Les résultats numériquesobtenus sur plusieurs cas de réservoir valident à la fois l’hypothèse effectuée ainsi que la qualitéde l’algorithme pour le problème de calage d’historique. En complément de cette validation numérique,un résultat théorique de convergence vers un point critique est prouvé pour la méthoded’optimisation construite / We worked in this thesis on a classical inverse problem in the petroleum industry, historymatching. We proposed a new geostatistical parameterization technique as well as a new derivativefree optimization algorithm adapted to the problem specificities. The parameterization method is based on two approaches found in the literature, the local gradual deformation method and the domain deformation method. Similarly to the local gradual deformation method, our method combines two or more model realizations inside previouslydefined zones. Moreover, our method adds the possibility to dynamically update the shape ofthe zones during the optimization process. This property substantially improves its robustnesswith regard to the initial choice of the zones. Thus, the greater flexibility brought by our methodallowed us to develop an initialization methodology which garantees a good initial point for theoptimization. To reduce the number of evaluations needed to minimize the objective function, we madethe assumption that a local parameter does not influence the production data of a distantwell. With this hypothesis, the objective function is then considered partially separable. Theoptimization algorithm we developped, called DFO-PSOF, is a trust region algorithm basedon quadratic interpolation models which exploits this partial separability property. Numericalresults obtained on some reservoir test cases validate both the hypothesis and the quality of ouralgorithm for the history matching problem. Moreover, a theoretical convergence result towardsa first order critical point, is proved for this new optimization method
2

An active-set trust-region method for bound-constrained nonlinear optimization without derivatives applied to noisy aerodynamic design problems / Une méthode de région de confiance avec ensemble actif pour l'optimisation non linéaire sans dérivées avec contraintes de bornes appliquée à des problèmes aérodynamiques bruités

Tröltzsch, Anke 07 June 2011 (has links)
L’optimisation sans dérivées (OSD) a connu un regain d’intérêt ces dernières années, principalement motivée par le besoin croissant de résoudre les problèmes d’optimisation définis par des fonctions dont les valeurs sont calculées par simulation (par exemple, la conception technique, la restauration d’images médicales ou de nappes phréatiques).Ces dernières années, un certain nombre de méthodes d’optimisation sans dérivée ont été développées et en particulier des méthodes fondées sur un modèle de région de confiance se sont avérées obtenir de bons résultats.Dans cette thèse, nous présentons un nouvel algorithme de région de confiance, basé sur l’interpolation, qui se montre efficace et globalement convergent (en ce sens que sa convergence vers un point stationnaire est garantie depuis tout point de départ arbitraire). Le nouvel algorithme repose sur la technique d’auto-correction de la géométrie proposé par Scheinberg and Toint (2010). Dans leur théorie, ils ont fait avancer la compréhension du rôle de la géométrie dans les méthodes d’OSD à base de modèles. Dans notre travail, nous avons pu améliorer considérablement l’efficacité de leur méthode, tout en maintenant ses bonnes propriétés de convergence. De plus, nous examinons l’influence de différents types de modèles d’interpolation sur les performances du nouvel algorithme.Nous avons en outre étendu cette méthode pour prendre en compte les contraintes de borne par l’application d’une stratégie d’activation. Considérer une méthode avec ensemble actif pour l’optimisation basée sur des modèles d’interpolation donne la possibilité d’économiser une quantité importante d’évaluations de fonctions. Il permet de maintenir les ensembles d’interpolation plus petits tout en poursuivant l’optimisation dans des sous-espaces de dimension inférieure. L’algorithme résultant montre un comportement numérique très compétitif. Nous présentons des résultats sur un ensemble de problèmes-tests issu de la collection CUTEr et comparons notre méthode à des algorithmes de référence appartenant à différentes classes de méthodes d’OSD.Pour réaliser des expériences numériques qui intègrent le bruit, nous créons un ensemble de cas-tests bruités en ajoutant des perturbations à l’ensemble des problèmes sans bruit. Le choix des problèmes bruités a été guidé par le désir d’imiter les problèmes d’optimisation basés sur la simulation. Enfin, nous présentons des résultats sur une application réelle d’un problème de conception de forme d’une aile fourni par Airbus. / Derivative-free optimization (DFO) has enjoyed renewed interest over the past years, mostly motivated by the ever growing need to solve optimization problems defined by functions whose values are computed by simulation (e.g. engineering design, medical image restoration or groundwater supply).In the last few years, a number of derivative-free optimization methods have been developed and especially model-based trust-region methods have been shown to perform well.In this thesis, we present a new interpolation-based trust-region algorithm which shows to be efficient and globally convergent (in the sense that its convergence is guaranteed to a stationary point from arbitrary starting points). The new algorithm relies on the technique of self-correcting geometry proposed by Scheinberg and Toint [128] in 2009. In their theory, they advanced the understanding of the role of geometry in model-based DFO methods, in our work, we improve the efficiency of their method while maintaining its good theoretical convergence properties. We further examine the influence of different types of interpolation models on the performance of the new algorithm.Furthermore, we extended this method to handle bound constraints by applying an active-set strategy. Considering an active-set method in bound-constrained model-based optimization creates the opportunity of saving a substantial amount of function evaluations. It allows to maintain smaller interpolation sets while proceeding optimization in lower dimensional subspaces. The resulting algorithm is shown to be numerically highly competitive. We present results on a test set of smooth problems from the CUTEr collection and compare to well-known state-of-the-art packages from different classes of DFO methods.To report numerical experiments incorporating noise, we create a test set of noisy problems by adding perturbations to the set of smooth problems. The choice of noisy problems was guided by a desire to mimic simulation-based optimization problems. Finally, we will present results on a real-life application of a wing-shape design problem provided by Airbus.
3

Algorithmes d'optimisation sans dérivées à caractère probabiliste ou déterministe : analyse de complexité et importance en pratique / Derivative-free optimization methods based on probabilistic and deterministic properties : complexity analysis and numerical relevance

Royer, Clément 04 November 2016 (has links)
L'utilisation d'aspects aléatoires a contribué de façon majeure aux dernières avancées dans le domaine de l'optimisation numérique; cela est dû en partie à la recrudescence de problèmes issus de l'apprentissage automatique (machine learning). Dans un tel contexte, les algorithmes classiques d'optimisation non linéaire, reposant sur des principes déterministes, se révèlent en effet bien moins performants que des variantes incorporant de l'aléatoire. Le coût de ces dernières est souvent inférieur à celui de leurs équivalents déterministes; en revanche, il peut s'avérer difficile de maintenir les propriétés théoriques d'un algorithme déterministe lorsque de l'aléatoire y est introduit. Effectuer une analyse de complexité d'une telle méthode est un procédé très répandu dans ce contexte. Cette technique permet déstimer la vitesse de convergence du schéma considéré et par là même d'établir une forme de convergence de celui-ci. Les récents travaux sur ce sujet, en particulier pour des problèmes d'optimisation non convexes, ont également contribué au développement de ces aspects dans le cadre déterministe, ceux-ci apportant en effet un éclairage nouveau sur le comportement des algorithmes. Dans cette thèse, on s'intéresse à l'amélioration pratique d'algorithmes d'optimisation sans dérivées à travers l'introduction d'aléatoire, ainsi qu'à l'impact numérique des analyses de complexité. L'étude se concentre essentiellement sur les méthodes de recherche directe, qui comptent parmi les principales catégories d'algorithmes sans dérivées; cependant, l'analyse sous-jacente est applicable à un large éventail de ces classes de méthodes. On propose des variantes probabilistes des propriétés requises pour assurer la convergence des algorithmes étudiés, en mettant en avant le gain en efficacité induit par ces variantes: un tel gain séxplique principalement par leur coût très faible en évaluations de fonction. Le cadre de base de notre analyse est celui de méthodes convergentes au premier ordre, que nous appliquons à des problèmes sans ou avec contraintes linéaires. Les bonnes performances obtenues dans ce contexte nous incitent par la suite à prendre en compte des aspects d'ordre deux. A partir des propriétés de complexité des algorithmes sans dérivées, on développe de nouvelles méthodes qui exploitent de l'information du second ordre. L'analyse de ces procédures peut être réalisée sur un plan déterministe ou probabiliste: la deuxième solution nous permet d'étudier de nouveaux aspects aléatoires ainsi que leurs conséquences sur l'éfficacité et la robustesse des algorithmes considérés. / Randomization has had a major impact on the latest developments in the field of numerical optimization, partly due to the outbreak of machine learning applications. In this increasingly popular context, classical nonlinear programming algorithms have indeed been outperformed by variants relying on randomness. The cost of these variants is usually lower than for the traditional schemes, however theoretical guarantees may not be straightforward to carry out from the deterministic to the randomized setting. Complexity analysis is a useful tool in the latter case, as it helps in providing estimates on the convergence speed of a given scheme, which implies some form of convergence. Such a technique has also gained attention from the deterministic optimization community thanks to recent findings in the nonconvex case, as it brings supplementary indicators on the behavior of an algorithm. In this thesis, we investigate the practical enhancement of deterministic optimization algorithms through the introduction of random elements within those frameworks, as well as the numerical impact of their complexity results. We focus on direct-search methods, one of the main classes of derivative-free algorithms, yet our analysis applies to a wide range of derivative-free methods. We propose probabilistic variants on classical properties required to ensure convergence of the studied methods, then enlighten their practical efficiency induced by their lower consumption of function evaluations. Firstorder concerns form the basis of our analysis, which we apply to address unconstrained and linearly-constrained problems. The observed gains incite us to additionally take second-order considerations into account. Using complexity properties of derivative-free schemes, we develop several frameworks in which information of order two is exploited. Both a deterministic and a probabilistic analysis can be performed on these schemes. The latter is an opportunity to introduce supplementary probabilistic properties, together with their impact on numerical efficiency and robustness.
4

Optimisation sans dérivées sous contraintes : deux applications industrielles en ingénierie de réservoir et en calibration des moteurs

Langouët, Hoël 28 June 2011 (has links) (PDF)
L'optimisation intervient dans de nombreuses applications IFPEN, notamment dans l'estimation de paramètres de modèles numériques à partir de données en géosciences ou en calibration des moteurs. Dans ces applications, on cherche à minimiser une fonction complexe, coûteuse à estimer, et dont les dérivées ne sont pas toujours disponibles. A ces difficultés s'ajoutent la prise en compte de contraintes non linéaires et parfois l'aspect multi-objectifs. Au cours de cette thèse, nous avons développé la méthode SQA (Sequential Quadradic Approximation), une extension de la méthode d'optimisation sans dérivées de M.J.D. Powell pour la prise en compte de contraintes à dérivées connues ou non. Cette méthode est basée sur la résolution de problèmes d'optimisation simplifiés basés sur des modèles quadratiques interpolant la fonction et les contraintes sans dérivées, construits à partir d'un nombre limité d'évaluations de celles-ci. Si la résolution de ce sous-problème ne permet pas une progression pour l'optimisation originale, de nouvelles simulations sont réalisées pour tenter d'améliorer les modèles. Les résultats de SQA sur différents benchmarks montrent son efficacité pour l'optimisation sans dérivées sous contraintes. Enfin, SQA a été appliqué avec succès à deux applications industrielles en ingénierie de réservoir et en calibration des moteurs. Une autre problématique majeure en optimisation étudiée dans cette thèse est la minimisation multi-objectifs sous contraintes. La méthode évolutionnaire Multi-Objective Covariance Matrix Adaptation, adaptée à la prise en compte des contraintes, s'est révélée très performante dans l'obtention de compromis pour la calibration des moteurs.
5

Une méthode de région de confiance avec ensemble actif pour l'optimisation non linéaire sans dérivées avec contraintes de bornes appliquée à des problèmes aérodynamiques bruités.

Troltzsch, Anke 07 June 2011 (has links) (PDF)
L'optimisation sans dérivées (OSD) a connu un regain d'intérêt ces dernières années, principalement motivée par le besoin croissant de résoudre les problèmes d'optimisation définis par des fonctions dont les valeurs sont calculées par simulation (par exemple, la conception technique, la restauration d'images médicales ou de nappes phréatiques). Ces dernières années, un certain nombre de méthodes d'optimisation sans dérivée ont été développées et en particulier des méthodes fondées sur un modèle de région de confiance se sont avérées obtenir de bons résultats. Dans cette thèse, nous présentons un nouvel algorithme de région de confiance, basé sur l'interpolation, qui se montre efficace et globalement convergent (en ce sens que sa convergence vers un point stationnaire est garantie depuis tout point de départ arbitraire). Le nouvel algorithme repose sur la technique d'auto-correction de la géométrie proposé par Scheinberg and Toint (2010). Dans leur théorie, ils ont fait avancer la compréhension du rôle de la géométrie dans les méthodes d'OSD à base de modèles. Dans notre travail, nous avons pu améliorer considérablement l'efficacité de leur méthode, tout en maintenant ses bonnes propriétés de convergence. De plus, nous examinons l'influence de différents types de modèles d'interpolation sur les performances du nouvel algorithme. Nous avons en outre étendu cette méthode pour prendre en compte les contraintes de borne par l'application d'une stratégie d'activation. Considérer une méthode avec ensemble actif pour l'optimisation basée sur des modèles d'interpolation donne la possibilité d'économiser une quantité importante d'évaluations de fonctions. Il permet de maintenir les ensembles d'interpolation plus petits tout en poursuivant l'optimisation dans des sous-espaces de dimension inférieure. L'algorithme résultant montre un comportement numérique très compétitif. Nous présentons des résultats sur un ensemble de problèmes-tests issu de la collection CUTEr et comparons notre méthode à des algorithmes de référence appartenant à différentes classes de méthodes d'OSD. Pour réaliser des expériences numériques qui intègrent le bruit, nous créons un ensemble de cas-tests bruités en ajoutant des perturbations à l'ensemble des problèmes sans bruit. Le choix des problèmes bruités a été guidé par le désir d'imiter les problèmes d'optimisation basés sur la simulation. Enfin, nous présentons des résultats sur une application réelle d'un problème de conception de forme d'une aile fourni par Airbus.
6

Optimisation sans dérivées sous incertitudes appliquées à des simulateurs coûteux / Derivative-free optimization under uncertainty applied to costly simulators

Pauwels, Benoît 10 March 2016 (has links)
La modélisation de phénomènes complexes rencontrés dans les problématiques industrielles peut conduire à l'étude de codes de simulation numérique. Ces simulateurs peuvent être très coûteux en temps d'exécution (de quelques heures à plusieurs jours), mettre en jeu des paramètres incertains et même être intrinsèquement stochastiques. Fait d'importance en optimisation basée sur de tels simulateurs, les dérivées des sorties en fonction des entrées peuvent être inexistantes, inaccessibles ou trop coûteuses à approximer correctement. Ce mémoire est organisé en quatre chapitres. Le premier chapitre traite de l'état de l'art en optimisation sans dérivées et en modélisation d'incertitudes. Les trois chapitres suivants présentent trois contributions indépendantes --- bien que liées --- au champ de l'optimisation sans dérivées en présence d'incertitudes. Le deuxième chapitre est consacré à l'émulation de codes de simulation stochastiques coûteux --- stochastiques au sens où l'exécution de simulations avec les mêmes paramètres en entrée peut donner lieu à des sorties distinctes. Tel était le sujet du projet CODESTOCH mené au Centre d'été de mathématiques et de recherche avancée en calcul scientifique (CEMRACS) au cours de l'été 2013 avec deux doctorants de Électricité de France (EDF) et du Commissariat à l'énergie atomique et aux énergies alternatives (CEA). Nous avons conçu quatre méthodes de construction d'émulateurs pour des fonctions dont les valeurs sont des densités de probabilité. Ces méthodes ont été testées sur deux exemples-jouets et appliquées à des codes de simulation industriels concernés par trois phénomènes complexes: la distribution spatiale de molécules dans un système d'hydrocarbures (IFPEN), le cycle de vie de grands transformateurs électriques (EDF) et les répercussions d'un hypothétique accident dans une centrale nucléaire (CEA). Dans les deux premiers cas l'émulation est une étape préalable à la résolution d'un problème d'optimisation. Le troisième chapitre traite de l'influence de l'inexactitude des évaluations de la fonction objectif sur la recherche directe directionnelle --- un algorithme classique d'optimisation sans dérivées. Dans les problèmes réels, l'imprécision est sans doute toujours présente. Pourtant les utilisateurs appliquent généralement les algorithmes de recherche directe sans prendre cette imprécision en compte. Nous posons trois questions. Quelle précision peut-on espérer obtenir, étant donnée l'inexactitude ? À quel prix cette précision peut-elle être atteinte ? Quels critères d'arrêt permettent de garantir cette précision ? Nous répondons à ces trois questions pour l'algorithme de recherche directe directionnelle appliqué à des fonctions dont l'imprécision sur les valeurs --- stochastique ou non --- est uniformément bornée. Nous déduisons de nos résultats un algorithme adaptatif pour utiliser efficacement des oracles de niveaux de précision distincts. Les résultats théoriques et l'algorithme sont validés avec des tests numériques et deux applications réelles: la minimisation de surface en conception mécanique et le placement de puits pétroliers en ingénierie de réservoir. Le quatrième chapitre est dédié aux problèmes d'optimisation affectés par des paramètres imprécis, dont l'imprécision est modélisée grâce à la théorie des ensembles flous. Plusieurs méthodes ont déjà été publiées pour résoudre les programmes linéaires où apparaissent des coefficients flous, mais très peu pour traiter les problèmes non linéaires. Nous proposons un algorithme pour répondre à une large classe de problèmes par tri non-dominé itératif. / The modeling of complex phenomena encountered in industrial issues can lead to the study of numerical simulation codes. These simulators may require extensive execution time (from hours to days), involve uncertain parameters and even be intrinsically stochastic. Importantly within the context of simulation-based optimization, the derivatives of the outputs with respect to the inputs may be inexistent, inaccessible or too costly to approximate reasonably. This thesis is organized in four chapters. The first chapter discusses the state of the art in derivative-free optimization and uncertainty modeling. The next three chapters introduce three independent---although connected---contributions to the field of derivative-free optimization in the presence of uncertainty. The second chapter addresses the emulation of costly stochastic simulation codes---stochastic in the sense simulations run with the same input parameters may lead to distinct outputs. Such was the matter of the CODESTOCH project carried out at the Summer mathematical research center on scientific computing and its applications (CEMRACS) during the summer of 2013, together with two Ph.D. students from Electricity of France (EDF) and the Atomic Energy and Alternative Energies Commission (CEA). We designed four methods to build emulators for functions whose values are probability density functions. These methods were tested on two toy functions and applied to industrial simulation codes concerned with three complex phenomena: the spatial distribution of molecules in a hydrocarbon system (IFPEN), the life cycle of large electric transformers (EDF) and the repercussions of a hypothetical accidental in a nuclear plant (CEA). Emulation was a preliminary process towards optimization in the first two cases. In the third chapter we consider the influence of inaccurate objective function evaluations on direct search---a classical derivative-free optimization method. In real settings inaccuracy may never vanish, however users usually apply direct search algorithms disregarding inaccuracy. We raise three questions. What precision can we hope to achieve, given the inaccuracy? How fast can this precision be attained? What stopping criteria can guarantee this precision? We answer these three questions for directional direct search applied to objective functions whose evaluation inaccuracy stochastic or not is uniformly bounded. We also derive from our results an adaptive algorithm for dealing efficiently with several oracles having different levels of accuracy. The theory and algorithm are validated with numerical tests and two industrial applications: surface minimization in mechanical design and oil well placement in reservoir engineering. The fourth chapter considers optimization problems with imprecise parameters, whose imprecision is modeled with fuzzy sets theory. A number of methods have been published to solve linear programs involving fuzzy parameters, but only a few as for nonlinear programs. We propose an algorithm to address a large class of fuzzy optimization problems by iterative non-dominated sorting. The distributions of the fuzzy parameters are assumed only partially known. We also provide a criterion to assess the precision of the solutions and make comparisons with other methods found in the literature. We show that our algorithm guarantees solutions whose level of precision at least equals the precision on the available data.

Page generated in 0.1218 seconds