1 |
Fluxo de potência ótimo multiobjetivo com restrições de segurança e variáveis discretas / Multiobjective security constrained optimal power flow with discrete variablesFerreira, Ellen Cristina 11 May 2018 (has links)
O presente trabalho visa a investigação e o desenvolvimento de estratégias de otimização contínua e discreta para problemas de Fluxo de Potência Ótimo com Restrições de Segurança (FPORS) Multiobjetivo, incorporando variáveis de controle associadas a taps de transformadores em fase, chaveamentos de bancos de capacitores e reatores shunt. Um modelo Problema de Otimização Multiobjetivo (POM) é formulado segundo a soma ponderada, cujos objetivos são a minimização de perdas ativas nas linhas de transmissão e de um termo adicional que proporciona uma maior margem de reativos ao sistema. Investiga-se a incorporação de controles associados a taps e shunts como grandezas fixas, ou variáveis contínuas e discretas, sendo neste último caso aplicadas funções auxiliares do tipo polinomial e senoidal, para fins de discretização. O problema completo é resolvido via meta-heurísticas Evolutionary Particle Swarm Optimization (EPSO) e Differential Evolutionary Particle Swarm Optimization (DEEPSO). Os algoritmos foram desenvolvidos utilizando o software MatLab R2013a, sendo a metodologia aplicada aos sistemas IEEE de 14, 30, 57, 118 e 300 barras e validada sob os prismas diversidade e qualidade das soluções geradas e complexidade computacional. Os resultados obtidos demonstram o potencial do modelo e estratégias de resolução propostas como ferramentas auxiliares ao processo de tomada de decisão em Análise de Segurança de redes elétricas, maximizando as possibilidades de ação visando a redução de emergências pós-contingência. / The goal of the present work is to investigate and develop continuous and discrete optimization strategies for SCOPF problems, also taking into account control variables related to in-phase transformers, capacitor banks and shunt reactors. Multiobjective optimization model is formulated under a weighted sum criteria whose objectives are the minimization of active power losses and an additional term that yields a greater reactive support to the system. Controls associated with taps and shunts are modeled either as fixed quantities, or continuous and discrete variables, in which case auxiliary functions of polynomial and sinusoidal types are applied for discretization purposes. The complete model is solved via EPSO and DEEPSO metaheuristics. Routines coded in Matlab were applied to the IEEE 14,30, 57, 118 and 300-bus test systems, where the method was validated in terms of diversity and quality of solutions and computational complexity. The results demonstrate the robustness of the model and solution approaches and uphold it as an effective support tool for the decision-making process in Power Systems Security Analysis, maximizing preventive actions in order to avoid insecure operating conditions.
|
2 |
Fluxo de potência ótimo multiobjetivo com restrições de segurança e variáveis discretas / Multiobjective security constrained optimal power flow with discrete variablesEllen Cristina Ferreira 11 May 2018 (has links)
O presente trabalho visa a investigação e o desenvolvimento de estratégias de otimização contínua e discreta para problemas de Fluxo de Potência Ótimo com Restrições de Segurança (FPORS) Multiobjetivo, incorporando variáveis de controle associadas a taps de transformadores em fase, chaveamentos de bancos de capacitores e reatores shunt. Um modelo Problema de Otimização Multiobjetivo (POM) é formulado segundo a soma ponderada, cujos objetivos são a minimização de perdas ativas nas linhas de transmissão e de um termo adicional que proporciona uma maior margem de reativos ao sistema. Investiga-se a incorporação de controles associados a taps e shunts como grandezas fixas, ou variáveis contínuas e discretas, sendo neste último caso aplicadas funções auxiliares do tipo polinomial e senoidal, para fins de discretização. O problema completo é resolvido via meta-heurísticas Evolutionary Particle Swarm Optimization (EPSO) e Differential Evolutionary Particle Swarm Optimization (DEEPSO). Os algoritmos foram desenvolvidos utilizando o software MatLab R2013a, sendo a metodologia aplicada aos sistemas IEEE de 14, 30, 57, 118 e 300 barras e validada sob os prismas diversidade e qualidade das soluções geradas e complexidade computacional. Os resultados obtidos demonstram o potencial do modelo e estratégias de resolução propostas como ferramentas auxiliares ao processo de tomada de decisão em Análise de Segurança de redes elétricas, maximizando as possibilidades de ação visando a redução de emergências pós-contingência. / The goal of the present work is to investigate and develop continuous and discrete optimization strategies for SCOPF problems, also taking into account control variables related to in-phase transformers, capacitor banks and shunt reactors. Multiobjective optimization model is formulated under a weighted sum criteria whose objectives are the minimization of active power losses and an additional term that yields a greater reactive support to the system. Controls associated with taps and shunts are modeled either as fixed quantities, or continuous and discrete variables, in which case auxiliary functions of polynomial and sinusoidal types are applied for discretization purposes. The complete model is solved via EPSO and DEEPSO metaheuristics. Routines coded in Matlab were applied to the IEEE 14,30, 57, 118 and 300-bus test systems, where the method was validated in terms of diversity and quality of solutions and computational complexity. The results demonstrate the robustness of the model and solution approaches and uphold it as an effective support tool for the decision-making process in Power Systems Security Analysis, maximizing preventive actions in order to avoid insecure operating conditions.
|
3 |
Funções penalidade para variáveis discretas e o problema de fluxo de potência ótimo reativo /Mazal, Camila Mara Nardello January 2019 (has links)
Orientador: Edméa Cássia Baptista / Resumo: O problema de fluxo de potência ótimo reativo é representado matematicamente por um problema de otimização não linear, restrito, não convexo, de grande porte e com variáveis de controle contínuas e discretas. A representação dos taps dos transformadores em fase e das susceptâncias shunt dos bancos de capacitores/reatores do sistema como variáveis discretas, torna o problema mais próximo da realidade. Entretanto, problemas de otimização não linear com variáveis discretas apresentam dificuldades em sua resolução, as quais são impostas pelas variáveis discretas. Uma das técnicas para sua resolução consiste em utilizar funções penalidades para tratar as variáveis discretas. Desta forma, transforma-se o problema discreto em uma sequência de problemas contínuos, e o método primal-dual barreira logarítmica pode ser utilizado para resolver esses problemas. Neste trabalho o objetivo é analisar a convergência do método de penalidade para variáveis discretas aplicado ao problema de fluxo de potência ótimo reativo, ao se utilizar diferentes funções penalidade e a combinação delas. Testes computacionais foram realizados com um exemplo númérico e com os sistemas elétricos IEEE 14, 30 e 118 barras, utilizando o pacote de otimização KNITRO em interface com o software GAMS. Os resultados demonstram que a combinação de diferentes funções penalidade para o tratamento das variáveis discretas é promissora. / Abstract: The reactive optimal power flow problem is mathematically represented by a nonlinear, constrained, nonconvex, large scale optimization problem with continuous and discrete control variables. The representation of the in-phase transformers taps and/or the shunt susceptances of capacitor/reactor Banks of the system, as discrete variables, make the problem closer to reality. Nonlinear optimization problems with discrete variables are difficulty to solve, due to the discrete variables. One of the soluction techniques consist in using penalty functions to treat the discrete variables. Thus, the discrete problem is transformed in a sequence of continuous problems, and the primal dual logarithmic barrier method can be used to solve these problems. In this work the objective is to analyze the convergence of the penalty method for discrete variables applied to the reactive optimal power flow problem, by using different penalty functions and the mixture of them. Computational tests have been carried out with a numerical example and with the IEEE 14, 30 and 118 buses electrical systems, using the KNITRO optimization package in interface with the GAMS software. The results show that a mixture of different penalty functions for treatment of discrete variable is advantageous. / Mestre
|
Page generated in 0.0741 seconds