• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 3
  • Tagged with
  • 12
  • 12
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optique des ondes de surface : super-résolution et interaction matière-rayonnement / Surface wave optics : super-resolution and wave-matter interaction

Archambault, Alexandre 09 December 2011 (has links)
Il existe au niveau d’interfaces séparant des milieux de constantes diélectriques de signes opposés des ondes électromagnétiques confinées à proximité de ces interfaces. On parle d’ondes de surface. C’est notamment le cas des métaux et des cristaux polaires : on parle alors de plasmons-polaritons de surface et de phonons-polaritons de surface respectivement. L’objectif de cette thèse est de revisiter certains aspects théoriques associés à ces ondes de surface.Dans un premier temps, en nous basant sur le formalisme de Green, nous donnons un moyen d’obtenir une expression du champ des ondes de surface sous forme de somme de modes. En présence de pertes, ces ondes ont nécessairement un vecteur d’onde ou une pulsation complexe. Nous donnons ainsi deux expressions de leur champ, correspondant à chacun de ces deux cas, et discutons de l’opportunité d’utiliser l’une ou l’autre de ces expressions.Nous posons par la suite les bases d’une optique de Fourier et d’une optique géométrique des ondes de surface. Nous montrons comment obtenir une équation de Helmholtz à deux dimensions pour les ondes de surface, un principe d’Huygens-Fresnel pour les ondes de surface, ainsi qu’une équation eikonale pour les ondes de surface, qui s’applique sous certaines hypothèses. Nous nous intéressons également à la superlentille proposée par Pendry, qui s’appuie sur les ondes de surface. Nous étudions notamment le fonctionnement de cette superlentille en régime impulsionnel, et montrons qu’en présence de pertes, il est possible d’obtenir une meilleure résolution avec certaines formes d’impulsion par rapport au régime harmonique, au prix d’une importante baisse de signal toutefois.Nous développons ensuite un traitement quantique des ondes de surface. Nous calculons au préalable une expression de leur énergie, et nous donnons une expression de leur hamiltonien et de leurs opérateurs champ. Sans pertes, nous montrons que le facteur de Purcell prédit par notre théorie quantique est rigoureusement égal au facteur de Purcell calculé avec des outils classiques. Nous comparons ensuite ce facteur de Purcell à celui calculé classiquement avec pertes, et montrons sur un exemple que les pertes peuvent être négligées dans de nombreux cas. Nous donnons enfin une expression des coefficients d’Einstein associés aux ondes de surface permettant d’étudier la dynamique de l’inversion de population d’un milieu fournissant un gain aux ondes de surface. Nous appliquons par la suite ce formalisme quantique à l’interaction électrons-phonons-polaritons de surface dans les puits quantiques, notamment leur interaction avec un mode de phonon du puits particulièrement confiné grâce à un effet de constante diélectrique proche de zéro (epsilon near zero, ENZ). / Interfaces between materials having opposite dielectric constants support electromagnetic waves confined close to these interfaces called surface waves. For metals and polar crystals, they are respectively called surface plasmon-polaritons and surface phonon-polaritons. The goal of this thesis is to revisit some theoretical aspects associated to these surface waves.Using the Green formalism, we derive an expression of the surface wave field as a sum of modes. With losses, these waves must have a complex wave vector or frequency. Thus we give two expressions of their field, for each of these cases, and discuss when each of these expressions should be used.We then give the basis of a surface wave Fourier optics and geometrical optics. We derive a 2D Helmholtz equation for surface waves, a Huygens-Fresnel principle for surface waves, and an eikonal equation for surface waves. We then take a look at Pendry’s superlens, in which surface waves play a major role. We study the behavior of the superlens in pulsed mode taking losses into account, and show that its resolution can be increased for some pulse shapes compared to the steady state, at the expense of a signal decay.We then develop a quantum treatment of surface waves. We first calculate their energy, and then give an expression of their hamiltonian and field operators. Without losses, we show that the Purcell factor given by our quantum theory is perfectly equal to the Purcell factor given by the classical theory. We then compare this Purcell factor to the lossy case on an example, and show that losses can often be neglected. We then derive the Einstein coefficients associated to surface wave emission and absorption, which allow studying the population inversion dynamics of a gain medium. We then use this quantum formalism to study the interaction between electrons and surface phonon-polaritons in quantum wells, particularly their interaction with a phonon mode which features high confinement thanks to an epsilon near zero (ENZ) effect.
12

Méthodes de microscopie par holographie numérique interférentielle en couleurs avec un éclairage partiellement cohérent

Dohet-Eraly, Jérôme 19 April 2017 (has links)
La présente thèse traite de méthodes en microscopie holographique numérique (MHN) en couleurs, avec un éclairage de cohérence spatiale partielle. Le principal inconvénient de la microscopie optique classique est sa faible profondeur de champ, rendant difficile l’observation de phénomènes dynamiques dans des échantillons épais. Au contraire, la MHN offre une reconstruction en profondeur grâce à la propagation numérique de l’hologramme. La MHN interférométrique donne aussi le contraste quantitatif de la phase, utile pour analyser des objets transparents. Un éclairage à plusieurs longueurs d’onde dans une configuration appropriée permet la MHN en couleurs. L’imagerie en flux et en couleurs de particules en MHN est ici développée, avec une méthode pour la correction automatique de la balance des couleurs et des défauts permanents. Elle est appliquée pour l’analyse du plancton dans des échantillons d’eau de surface et fournit des images de haute qualité pour les intensité et phase optiques. En outre, la réduction du bruit obtenue en diminuant la cohérence spatiale de l’éclairage en MHN est également étudiée, avec deux modèles évaluant quantitativement ce phénomène en fonction de la cohérence spatiale de la lumière et de la distance entre la source de bruit et le plan d’enregistrement. De plus, la MHN différentielle est aussi abordée. Celle-ci fournit les phases différentielles, la phase étant calculée par intégration. Cependant, les défauts présents conduisent à des aberrations lors du calcul de la phase, qui affectent sa qualité et empêchent la reconstruction holographique. Un traitement spécifique est développé, permettant la reconstruction numérique en profondeur. Enfin, en MHN, un critère est essentiel pour déterminer automatiquement la distance de netteté de l’objet. Deux critères de netteté sont ici mis au point, fonctionnant indépendamment de la nature de l’objet observé (amplitude, phase ou mixte). L’un, monochromatique, est basé sur l’analyse de l’amplitude et sur un filtrage passe-haut ;l’autre, qui détecte rapidement le plan de netteté en MHN en couleurs, compare la phase dans le domaine de Fourier entre les couleurs. Les méthodes développées dans la thèse montrent le potentiel élevé de la MHN en couleurs avec un éclairage partiellement cohérent spatialement, suggérant un avenir prometteur pour cette technique. / The thesis deals with methods and developments in color digital holographic microscopy (DHM), with a partial spatial coherence illumination. The principal drawback of classical optical microscopy is its poor depth of field, which makes difficult the observation of dynamic phenomena in thick samples. On the contrary, DHM provides reconstruction in depth thanks to numeric propagation of the recorded hologram. Another feature of interferometric DHM is the quantitative phase contrast imaging, useful for analyzing transparent objects. Usual DHM is limited to monochromatic case, but multispectral illumination in an appropriate setup leads to color DHM. Color in-flow imaging of particles in DHM is developed in the thesis, with a method for the automatic correction of color balance and permanent defects. It is applied to analyze plankton microorganisms in untreated pond water samples, and provides high quality images, for both optical phase and intensity. Moreover, noise reduction obtained when decreasing the spatial coherence of the illumination in DHM is also investigated in the thesis, with the development of two models that quantitatively assess the noise reduction as a function of both the spatial coherence of the illumination, and the defocus distance of the noise source. Furthermore, differential DHM (DDHM) is also studied in the thesis. As DHM gives the optical phase, DDHM provides differential phases, from which phase is retrieved by integration. However, misalignments and defects give some aberrations, which affect phase quality and hinder refocusing. A specific hologram processing is developed, giving an accurate phase image and enabling holographic reconstruction in depth. Finally, in DHM, a criterion is essential to automatically achieve the refocusing distance of the object. Two refocusing criteria are developed in the thesis, both working independently of the nature of the observed object (amplitude, phase, or both mixed). The first one, monochromatic, is based on amplitude analysis and on a high-pass filtering process. The second one, which gives fast refocusing in multispectral DHM, compares the phase in the Fourier domain among wavelengths. Methods developed in the thesis show the high potential of color DHM with a partial spatial coherence illumination, suggesting a promising future for this technique. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished

Page generated in 0.0748 seconds