1 |
Permeation of excised intestinal tissue by insulin released from Eudragit® L100/Trimethyl chitosan chloride microspheres /E.B. Marais.Marais, Etienne Barend January 2013 (has links)
The purpose of this research project was to develop and characterise matrix type microspheres prepared from Eudragit® L100, containing insulin as model peptide drug as well as an absorption enhancer, N-trimethyl chitosan chloride (TMC), to improve intestinal absorption via the paracellular route. Insulin loaded microspheres were prepared using a single water in oil emulsification/evaporation method in accordance with a fractional factorial design (23) and subsequently characterised in terms of morphology as well as internal structure. Also, insulin and TMC loading were determined using a high pressure liquid chromatography analysis (HPLC) and colorimetric assay, respectively.
Scanning electron microscopic characterisation revealed that most microsphere formulations showed a spherical shape and smooth surface with a sponge-like internal structure as well as relatively good homogeneity in terms of size distribution. Insulin loading ranged from 27.9 ± 14.25 – 52.4 ± 2.72% between the different formulations. TMC loading was lower than for insulin and ranged from 29.1 ± 3.3 - 37.7 ± 2.3% between the different formulations. The pronounced difference in insulin and TMC loading between the microsphere formulations is probably the result of the multitude parameters involved as well as the complex physicochemical processes which govern emulsification/solvent evaporation. Based on the microsphere characterisation results, two formulations were selected (i.e. B and F) for further characterisation (i.e. particle size distribution, dissolution behaviour, and enteric nature) and for in vitro evaluation of insulin transport across excised Fischer (FSR) rat intestinal tissue using a Sweetana-Grass diffusion chamber. Particle size analysis by means of laser light diffraction of the two selected microsphere formulations revealed that the mean particle size (based on volume) ranged from 135.7 ± 41.05 to 157.3 ± 31.74 m. Dissolution results for microsphere Formulations B and F revealed that both insulin and TMC were released from the microsphere formulations in an alkaline environment (pH 7.4). The mean dissolution time (MDT) for insulin ranged from 34.5 ± 4.01 to 42.6 ± 9.06 min, while the MDT for TMC ranged from 1.2 ± 1.73 to 6.8 ± 6.42 min. Statistical analysis revealed no significant differences in the MDT of either insulin or TMC (p-value > 0.05) between the two formulations, although the difference between insulin and TMC of each formulation was significant (p-value < 0.05). Microsphere formulations B and F released 36.92 and 48.21% of their total drug content over a period of 1 h in 0.1 M HCl.
Microsphere Formulation B showed 8.3 ± 0.52% and formulation F 8.9 ± 2.26% transport of the initial insulin dose after a period of 120 min across excised rat intestinal tissue. The increase in insulin transport by the microsphere formulations compared to that of the control group (i.e. insulin alone) correlated well with the decrease in transepithelial electrical resistance (TEER) caused by the microsphere formulations. The transport of insulin from Formulations B and F represented transport enhancement ratios of 10.67 and 9.68, respectively.
Insulin loaded EudragitL100 microspheres containing TMC were successfully prepared by emulsification/solvent evaporation that demonstrated promising potential to serve as oral drug delivery systems for insulin. The microspheres exhibited improved insulin permeability across intestinal epithelial tissue; however, its enteric properties should be improved and clinical effectiveness need to be confirmed by future in vivo studies. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
|
2 |
Permeation of excised intestinal tissue by insulin released from Eudragit® L100/Trimethyl chitosan chloride microspheres /E.B. Marais.Marais, Etienne Barend January 2013 (has links)
The purpose of this research project was to develop and characterise matrix type microspheres prepared from Eudragit® L100, containing insulin as model peptide drug as well as an absorption enhancer, N-trimethyl chitosan chloride (TMC), to improve intestinal absorption via the paracellular route. Insulin loaded microspheres were prepared using a single water in oil emulsification/evaporation method in accordance with a fractional factorial design (23) and subsequently characterised in terms of morphology as well as internal structure. Also, insulin and TMC loading were determined using a high pressure liquid chromatography analysis (HPLC) and colorimetric assay, respectively.
Scanning electron microscopic characterisation revealed that most microsphere formulations showed a spherical shape and smooth surface with a sponge-like internal structure as well as relatively good homogeneity in terms of size distribution. Insulin loading ranged from 27.9 ± 14.25 – 52.4 ± 2.72% between the different formulations. TMC loading was lower than for insulin and ranged from 29.1 ± 3.3 - 37.7 ± 2.3% between the different formulations. The pronounced difference in insulin and TMC loading between the microsphere formulations is probably the result of the multitude parameters involved as well as the complex physicochemical processes which govern emulsification/solvent evaporation. Based on the microsphere characterisation results, two formulations were selected (i.e. B and F) for further characterisation (i.e. particle size distribution, dissolution behaviour, and enteric nature) and for in vitro evaluation of insulin transport across excised Fischer (FSR) rat intestinal tissue using a Sweetana-Grass diffusion chamber. Particle size analysis by means of laser light diffraction of the two selected microsphere formulations revealed that the mean particle size (based on volume) ranged from 135.7 ± 41.05 to 157.3 ± 31.74 m. Dissolution results for microsphere Formulations B and F revealed that both insulin and TMC were released from the microsphere formulations in an alkaline environment (pH 7.4). The mean dissolution time (MDT) for insulin ranged from 34.5 ± 4.01 to 42.6 ± 9.06 min, while the MDT for TMC ranged from 1.2 ± 1.73 to 6.8 ± 6.42 min. Statistical analysis revealed no significant differences in the MDT of either insulin or TMC (p-value > 0.05) between the two formulations, although the difference between insulin and TMC of each formulation was significant (p-value < 0.05). Microsphere formulations B and F released 36.92 and 48.21% of their total drug content over a period of 1 h in 0.1 M HCl.
Microsphere Formulation B showed 8.3 ± 0.52% and formulation F 8.9 ± 2.26% transport of the initial insulin dose after a period of 120 min across excised rat intestinal tissue. The increase in insulin transport by the microsphere formulations compared to that of the control group (i.e. insulin alone) correlated well with the decrease in transepithelial electrical resistance (TEER) caused by the microsphere formulations. The transport of insulin from Formulations B and F represented transport enhancement ratios of 10.67 and 9.68, respectively.
Insulin loaded EudragitL100 microspheres containing TMC were successfully prepared by emulsification/solvent evaporation that demonstrated promising potential to serve as oral drug delivery systems for insulin. The microspheres exhibited improved insulin permeability across intestinal epithelial tissue; however, its enteric properties should be improved and clinical effectiveness need to be confirmed by future in vivo studies. / Thesis (MSc (Pharmaceutics))--North-West University, Potchefstroom Campus, 2013.
|
3 |
<b>Impact of formulation and media composition on polymer based dispersions</b>Pradnya Prakash Bapat (19977498) 31 October 2024 (has links)
<p dir="ltr">Amorphous solid dispersions (ASDs) are being widely used as enabling formulations for poorly water soluble drugs. An ASD is a molecular level mixture of an amorphous drug and a polymer to form a single-phase homogeneous blend. The amorphous form of a drug provides a higher transient solubility compared to equilibrium crystalline solubility, whereby the presence of a polymer of appropriate properties aids in crystallization inhibition. Polymers also improve the release rate of the drug from the ASD relative to the release rate of neat amorphous drug, specifically for release regimens where both drug and polymer release congruently. Hydroxypropyl methylcellulose acetate succinate (HPMCAS)-based ASDs tend to show congruent release of drug and polymer across multiple drug loadings, providing a significant dissolution improvement even beyond the amorphous solubility of a drug. Enteric polymers such as HPMCAS have been studied extensively in terms of enteric coated tablets but haven’t been explored in as much detail when molecularly dispersed with a drug as in case of ASDs. Literature shows not all ASDs are able to improve bioavailability of drugs. Such a failure to provide bioavailability advantage via certain ASDs could come from a randomized drug and polymer selection in the preformulation stage of drug product development which could fundamentally arise from the lack of understanding of the release mechanisms of ASDs. Given that HPMCAS is one of the most popularly used polymers for spray drying of ASDs in the pharmaceutical industry, investigating the release mechanisms of HPMCAS-based ASDs is critical. In this study, some of the key formulation design factors, such as drug-polymer interactions, different grades of polymer as well as dissolution media factors such as buffer capacity that impact the release performance of HPMCAS-based ASDs have been investigated. The results from this study are expected to contribute to the fundamental understanding of the failure mechanisms of HPMCAS-based ASDs, reducing empirical screening of drugs during the preformulation stage of the product development and enhance the success rate of ASDs.</p>
|
Page generated in 0.0675 seconds