241 |
Model studies toward the total synthesis of jatrophatrione: formation of nine-membered rings via Indian derivativesMcCloskey, Candice Joy 05 1900 (has links)
No description available.
|
242 |
Synthetic and theoretical studies of polyanionic inhibitors of HIV-1 infection of CD4-expressing cellsRuell, Jeffrey Alan 08 1900 (has links)
No description available.
|
243 |
Synthesis and properties of unsaturated carbonyl derivatives.Mackie, David Morson. January 1971 (has links)
No description available.
|
244 |
Lewis acid catalyzed reactions of 1-benzyl-2, 5-bis (trimethylsiloxy) pyrroleSandrin, Franco. January 1985 (has links)
No description available.
|
245 |
The synthesis, characterization and stereochemical investigation of Ti(chelato) 2X2 compounds.Taylor, Kenneth Robert. January 1973 (has links)
No description available.
|
246 |
Radical reactions in organic synthesisSacripante, Guerino. January 1986 (has links)
The 4-substituted glutarimide required for the synthesis of sesbanimide (53) was obtained by free radical addition of iodoacetamide onto the $ alpha, beta$-unsaturated ester (81) mediated by tributyltin; the lactol ring C was prepared by the analogous free radical cyclization of the $ alpha$-bromo-dipropargyl ketal 73. / The syntheses of tricyclic carbapenems involved appropriately substituted monocyclic azetidinone precursors. Free radical 5- exo cyclizations led to the relatively unstable benzo carbapenems 116, 119 and 120. The 6- exo mode, however, afforded stable benzo carbacephems 125, 127, 132 and 133. / $ alpha$-Bromo- and $ alpha{,} alpha$-dibromoazetidinones were converted stereoselectively to the $ alpha$-alkylazetidinones 149 and 153, or to $ beta$-alkylazetidinones 151, 154 and 159 by a free radical addition onto olefins 148 or allyltributyltin.
|
247 |
Asymmetric synthesis with an ephedrine based chiral auxilliary.Malissar, Dean Graham Shane. January 1992 (has links)
Abstract available in pdf file.
|
248 |
Azo-anions in organic synthesisNewington, Ian M. January 1985 (has links)
Novel synthetic applications of ambident azo-anions derived from hindered hydrazones have been investigated. Reaction with electrophiles occurred predominantly at carbon as the N-addition pathway was sterically retarded. Trityl, diphenyl-4-pyridylmethyl (DPP) benzhydryl, and t-butyldiphenylmethyl (BDP) hydrazones of various aldehydes and ketones were prepared in good yields from the corresponding hydrazines and carbonyls in aqueous methanol. The lithium salts derived from trityl and DPP hydrazones, by treatment with methyl lithium at -55°C, reacted with aldehydes and ketones to generate azo-alkoxides. These could be diverted to alcohols,by sequential protonation and spontaneous homolysis (about -20°C) in the presence of ethanethiol, or to alkenes,by treatment with phosphorus trichloride at -78 G followed by azo-homolysis. The reactions enabled efficient reductive cross-coupling of aldehydes and ketones. The mechanism of the alkene forming reaction was investigated. Anions of benzhydryl hydrazones were found to react inefficiently by a G-addition pathway giving mainly N-addition products. Anions of BDP hydrazones conveniently gave excellent yields of azo-alkanes upon treatment with alkyl halides,but no products were obtained on reaction with carbonyl electrophiles. The azo-alkanes could be isolated and purified and acted as key intermediates for several synthetically useful transformations. Homolysis in refluxing benzene with thiophenol gave alkanes in good yields. Phenylselenenyl-, bromo-, and chloro-alkanes,and β-alkylstyrenes were generated when thiol was replaced by diphenyl diselenide, N-bromosuccinimide, N-chlorosuccinimide and β-nitrostyrene respectively. Treatment of the azo-alkanes with trifluoroacetic acid generated benzophenone alkylhydrazones. These were dissolved in ethanol with concentrated hydrochloric acid, thereafter hydrolysis yielded alkylhydrazines or treatment with hydrogen (1 atm., 50°C, 20h) over 10% Pd/C generated primary amines by a novel use of carbonyls as α-aminocarbanion equivalents.
|
249 |
Novel oxidatively activated safety catch linkersSkarpheđinsson, Hjalmar January 2005 (has links)
Solid phase organic synthesis is a powerful technique to facilitate rapid synthesis and easy purification of organic compounds. The advancement of linkers and cleavage strategies is of paramount importance for the success of this approach. This thesis is concerned with the development of a robust safety catch linker system aimed to allow a broad range of commonly used reagents to be employed in a synthetic sequence carried out on a solid support. Chapter 1 outlines the principles of solid phase organic synthesis, the terminology associated with this approach and the advantages and disadvantages compared to conventional solution phase methods. Common attachment and release strategies for various functional groups are described and the safety catch principle is introduced. Chapter 2 discusses the design features of the linker system. Proof of principle is demonstrated for the attachment and release strategies with a simple solution phase model system. Chapter 3 describes the adaptation of the linker system to the solid phase. Key transformations are modelled with solution phase experiments and subsequently applied to solid phase. The loading determination of the solid phase system is also described. Chapter 4 reports an assessment of the reactivity of the linker system in the coupling transformation of aliphatic alcohols and amines. The chemoselectivity and efficiency of the CAN debenzylation/cyclorelease protocol is also evaluated. Chapter 5 demonstrates the utility of the linker system with the optimisation of a simple synthetic sequence in solution followed by adaptation to the solid phase. The synthesis of a pilot library of aryl alcohols utilizing a Suzuki coupling on solid support is described. The attachment and release of amines is also demonstrated with solid phase examples. Chapter 6 examines the potential of the linker system as an analytical tool to assess the outcome of stereoselective transformations. A chiral auxiliary is attached to the solid phase by aid of the safety catch linker and released into solution. A solution phase model system is developed to aid preliminary investigations in solution prior to adaptation to the solid phase.
|
250 |
Syntheses and spectra of isothiazolopyridines.Khouw, Virginia Tan January 1972 (has links)
No description available.
|
Page generated in 0.0725 seconds