• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification of organic fouling agents on activated carbon by evolved gas analysis.

Fisher, Nicholas G. January 2000 (has links)
Activated carbon is widely used in the gold processing industry as an adsorbent for the gold cyanide complex, [Au(CN)(subscript)2]. However, many other processing reagents are also adsorbed (termed fouling), which compete with the gold cyanide complex for active sites on the carbon. So far the only way of assessing the amount of fouling due to organic compounds that has adsorbed on the carbon is through the use of thermogravimetry (TG). Unfortunately, thermogravimetry only gives the percentage total of organic fouling agents adsorbed and no information can be obtained on the identity of the individual organic fouling agents. Thus this current work reports the development of analytical methods capable of identifying specific fouling agents.In this thesis the identification of two types of common organic fouling agents adsorbed on activated carbon during gold processing has been established using three thermal analysis techniques, namely thermal desorption-pyrolysis-gas chromatography-mass spectrometry (TD-py-GC-MS), thermogravimetry-mass spectrometry (TG-MS), and thermogravimetry-Fourier transform infrared (TG-FTIR) spectroscopy. TD-py-GC-MS was used to identify the individual decomposition gases of each sample. TG-MS and TG-FTIR were used to obtain the decomposition temperatures of the fouling agents, and to identify/monitor the gases evolved as a function of temperature. All analyses were performed in an inert atmosphere.The organic fouling agents studied were xanthates and frothing agents, which are used as flotation reagents. The xanthates studied were sodium ethyl xanthate (SEX), sodium isobutyl xanthate (SiBX), potassium ethyl xanthate (PEX), and potassium amyl xanthate (PAX). The frothing agents studied were polypropylene glycol (PPG), polypropylene glycol methyl ether (PPGME), alpha-terpineol, and methyl isobutyl carbinol (MiBC). The thermal decomposition of ++ / each pure reagent was studied, and then the reagents were individually adsorbed on an activated carbon (Haycarb, -45 mu m) and their thermal decomposition reinvestigated. These pure systems were then compared to the thermal decomposition of activated carbon samples taken from two gold processing plants.Between seven and sixteen gases were identified via TD-py-GC-MS for the decomposition of each xanthate. Common gases and types of gases identified included carbonyl sulfide, carbon disulfide, thiols, alcohols, carbonates, sulfides, disulfides, and carbonothioic acid, O,S, dialkyl esters. The thermogravimetric curve of each xanthate displayed two mass losses. The mass losses and their corresponding temperatures were dependent on the alkyl chain and alkali cation of the xanthate. TG-MS and TG-FTIR showed carbonyl sulfide and carbon disulfide were the most significant gases evolved from the decomposition of each xanthate.Each xanthate was adsorbed on activated carbon, and its thermal decomposition characteristics reinvestigated. On heating, similar gases were evolved to those detected for the xanthate alone. However, the TG curves displayed three mass losses compared to two with the xanthates not adsorbed on activated carbon. The first mass loss of each sample was attributed to a hydrolysis reaction between water retained in the activated carbon and the xanthate. TG-MS and TG-FTIR analyses showed carbon disulfide and carbonyl sulfide were the most significant gases evolved during the first mass loss and second mass losses respectively, and consequently these gases could be used as indicators of xanthate fouling on plant samples.The TD-Py-GC-MS, TG-MS, and TG-FTIR analyses of the frothing agents showed these compounds mainly boiled with little indication of thermal decomposition. The thermogravimetric curve of each frother displayed one mass loss. Upon reinvestigation of ++ / the frothing agents individually adsorbed on activated carbon, a number of different gases were identified by the TD-py-GC-MS analyses. For all adsorbed frothing agents (except MiBC) these included propanal, 2-ethyl-4-methyl1,3-dioxolane, 3,3-oxybis-2-butanol, and dioxanes. Each TG curve displayed one mass loss due to the decomposition of the frothing agent. The TG-MS and TG-FTIR analyses showed propanal was the most significant gas evolved for the PPG and PPGME. For alpha-terpineol, propene was also a significant gas, although this gas was not detected by TG-FTIR. The TD-py-GC-MS and TG-FTIR analyses of the MiBC showed it mainly boiled off the carbon without significant alteration.Four activated carbon samples were obtained from different parts of the process circuit in the Three Mile Hill plant in Western Australia. Nine to twelve gases were identified by TD-py-GC-MS analysis of each sample. Common gases included butene, 2-methyl-I-butene, and butanol. The TG curve of each sample displayed one mass loss due to the presence of fouling agents. TG-MS analyses showed butene was the most significant gas evolved for this mass loss. TG-FTIR analyses showed that carbonyl sulfide had also evolved during this mass loss. Thus it was concluded from the detection of carbonyl sulfide and its temperature of evolution, that fouling of the activated carbon by a xanthate had occurred.Five activated carbon samples were obtained from the Salsigne plant in France. Nine to fourteen gases were identified by TD-py-GC-MS analysis of each sample. Common gases included cyclopropane, butene, propanal, isobutanol, isoarnyl alcohol, and 2,5 and 2,6-dimethyl dioxene. The TG curve of each sample displayed one mass loss due to the decomposition of fouling agents, in the same temperature region as the Three Mile Hill samples. TG-MS analyses showed cyclopropane was the most significant gas evolved ++ / for this mass loss. TG-FTIR analyses showed that carbonyl sulfide had also evolved during this mass loss. Thus it was concluded from the detection of propanal, carbonyl sulfide, and their temperatures of evolution that fouling of the activated carbon by a xanthate and a frothing agent had occurred respectively.A comparison of the techniques showed that TD-py-GC-MS analysis was essential for unambiguous identification of the complex gas mixture obtained from decomposition of organic fouling agents. Unfortunately TD-py-GC-MS provided no information on mass losses or temperatures of gas evolution. TG-MS permitted the monitoring of evolved gases versus temperature via their molecular ions. However the molecular ion signals were affected by overlapping fragment and/or isotope ion signals. The TG-FTIR was most useful when the evolved gases gave an infrared adsorption that was very characteristic of the molecule, as for the identification of carbonyl sulfide and carbon disulfide. This work was successful as a combination of the analytical techniques enabled identification of fouling agents adsorbed on plant samples.
2

Treatment of TCE-contaminated groundwater using hybrid membrane treatment process

Hung, Wei-Jhe 05 August 2011 (has links)
In Taiwan, more than 25% of all water uses comes from groundwater, and thus groundwater is a very valuable water resource for both domestic and industrial uses. However, groundwater at many existing former industrial sites and disposal areas was contaminated by halogenated organic compounds that were released into the environment. The chlorinated solvent trichloroethene (TCE) is one of the most ubiquitous of these compounds. In this laboratory-scale feasibility study, a hybrid two-stage process combining fiber filtration (FF) and nanofiltration (NF) was applied to remove to suspended solids (SS) and TCE from contaminated groundwater for water purification. In this study, a man-made kaolin solution was used to simulate groundwater purification using FF system. Then, microfiltration (MF), ultrafiltration (UF), and NF systems were applied for TCE removal. The hybrid membrane process using FF and NF units was used to evaluate the feasibility on TCE removal. The scanning electron microscope (SEM) and energy dispersive spectroscope (EDS) were used to investigate membrane morphology and structure after use. A 3-D excitation emission fluorescence matrix (EEFM) was used to evaluate the potential of membrane organic fouling. Results show that the optimization filtration velocity of FF was 15.3 m/hr, and the observed TCE and SS removal efficiencies were 80% and 60%, respectively. Removal mechanisms for MF and UF were mainly sieving, and the removal mechanism for NF was mainly electrostatic repulsion. Results indicate that NF had the highest TCE removal efficiency (98.2%). When initial TCE concentration was 1 mg/L, NF membrane pore might shrink caused increased TCE removal (rejection). When TCE concentration was higher 1 mg/L, membrane damage and pore enlargement was observed with decreased TCE removal efficiency. The observed SS, sulfate, and hardness removal efficiencies were 99.8%, 98.7%, and 98.7% respectively, when FF and NF hybrid process was used. Higher TCE concentration might enlarge membrane pore, which caused decreased membrane separation and increased flux. Approximately 46% of flux drop was observed when NF was used alone compared to the hybrid membrane process using FF as the first treatment stage. Membrane analyses show that residual TCE was adsorbed on the membrane. Low zeta potential of groundwater was observed due to the compressed electric double layer, which caused aggregation of particle. High zeta potential of permeate was due to the particle dispersive through hybrid process. Results from SEM analysis show that membrane morphology was damaged by TCE, and heavy metal in groundwater deposited on membrane. Results of EEFM analysis indicate that groundwater contained humic acid (HA) and soluble microbial by-product (SMP). HA and SMP might be adsorbed on fiber filter, and extracellular polymeric substances (EPS) that attached on fiber filter might be washed out. The organic powders on the surface of the fiber filter might be washed out causing the increased in NPDOC concentrations. Humic acid could be removed through NF process, and SMP might be adsorbed in membrane pore caused organic fouling, and SMP might be washed out after treatment by the FF+NF hybrid process. Results indicate that FF as pre-treatment can maintain higher flux. Higher TCE concentration caused membrane destruction and decreased membrane separation. TCE contaminated groundwater can be affectively treated by the hybrid membrane system to meet the groundwater standard and reclaimed water standard. Reclaimed water could be used for industrial cooling water and irrigation purposes.
3

The effect of natural organic matter on ultrafiltration and reverse osmosis membrane performance at Komati Power Station

Dladla, Zanele January 2013 (has links)
Komati Power Station has installed a membrane plant consisting of ultrafiltration, double pass reverse osmosis and continuous electro-deionisation to treat cooling tower blowdowns in order to produce demineralised water and to conduct sidestream chemistry control of the cooling water circuit. This plant has replaced the existing ion-exchange plant that was used for the production of demineralised water and thus serves to reduce the loading of mobile salts in the ash dam (90% reduction) by eliminating regeneration effluent from the ion-exchange plant. Due to oil contamination in the cooling water circuit (when oil from oil coolers leaks into the cooling water), the membrane plant was also designed to operate on raw water from either the Nooigdedacht or the Vygeboom Dam or a blend of both dams. This is considered to be an emergency intervention under abnormal conditions to prevent possible irreversible fouling of the membranes due to oil in the cooling water. The Nooigtedach Dam water contains high concentrations of organic matter and is also enriched with nutrients due to raw sewage influent into the Dam water. This poses a challenge with regard to treatment of the high fouling feed water on the membrane plant. Natural organic matter in water has the ability to foul reverse osmosis membranes. This adversely affects the operation of the reverse osmosis process. However, very little information is available regarding the fouling characteristics of natural organic material in the raw and cooling water at Komati Power Station for the reverse osmosis membranes. Therefore, a pilot study was undertaken to determine the influence of natural organic matter on membrane fouling, to optimise the process for the removal of natural organic matter and to assess the ability of two different reverse osmosis membranes to effectively treat the high fouling feed water at Komati Power Station. The ability of a polyethersulphone hollow-fibre ultrafiltration membrane system was first evaluated to remove natural organic matter in the feedwater, by conducting pilot tests, initially without coagulation of the raw water and thereafter with in-line coagulation for organics removal. Jar tests were conducted in the laboratory to determine the most suitable coagulant and dosage for turbidity and natural organic matter removal. Various coagulants were tested and, based on the results of the jar tests, a coagulant (U3000) was identified based on optimal removal of both total organic carbon and turbidity at a dosing level of 20 mg/L. During the operation of the ultrafiltration pilot plant, permeate flow; feed pressure and feed temperature were monitored. Performance of the ultrafiltration membrane was monitored in terms of flux versus time for operation with and without a coagulation process. The results indicated that there was very little total organic carbon removal (maximum removal of 4%) without coagulation and a slight decrease in flux. The flux declined as a result of fouling but could be recovered by performing hydraulic backwashes and CEB procedures. Permeate flux, however, could be maintained at about 90 Lmh (from 642 hours of operation). Since most of the organics passed through the ultrafiltration membrane, it was concluded that the loss in flux was due to colloidal fouling of the membrane. This was observed when the operation was carried out using raw water as feed as well as when cooling water was used. The total organic carbon removal increased to 30% when the plant was operated with inline coagulation. The flux remained relatively stable during the first 600 hours of operation and only decreased significantly during the last 200 hours of operation as a result of fouling. The reduction in flux prior to cleaning was less than the 15% (maximum flux decline of 9.9% during the test period) which is acceptable according to the industry norm of 15%. It appeared that flux could be maintained at around 90 Lmh which was about the same as when no coagulant was applied. The 30% total organic carbon reduction that was obtained was not sufficient to reduce the organics to the level of 6mg/L dissolved organic carbon that was specified by the membrane manufacturer for the standard brackish water reverse osmosis membrane. Two reverse osmosis membranes – the standard brackish water reverse osmosis membrane (BW30-2540) and the extra-low-fouling membrane (BW30XFR-2540) – were assessed in terms of their ability to remove dissolved organic carbon, ease of cleaning of the membrane and the ability to recover flux after cleaning. This was done to establish which membrane is more suited to Komati’s high-fouling feedwater. The evaluation of the performance of the two reverse osmosis membranes was conducted using pre-treated water (filtered water after in-line coagulation, anti-scalant and biocide dosing) as well as using water that was not pre-treated. During operation (under both conditions), the normalised permeate flux, conductivity, dissolved organic carbon and organics absorbing at UV254 were monitored. It was established that in terms of flux decline that the extra low-fouling membrane gave slightly superior performance to that of the standard membrane, achieving longer production runs (up to 5 days compared with 3 days achieved by the standard brackish water membrane) without requiring chemical cleaning. The low fouling membrane achieved better CWF recovery after the cleaning cycles (81.26% Lmh of the virgin membrane on the occasions when there was flux loss) compared to the standard membrane (restored to 77.35% of CWF of the virgin membrane) when using untreated feed water. This performance improved when pre-treated feed water was used and the low fouling membrane’s CWF regained after the CIP was 95.89% which was within the industry norm of a flux recovery of 95%, indicating that the CIP had been effective. It was determined that the TOC rejection of the low-fouling membrane was higher (average TOC rejection of 97%, maximum TOC rejection of 99%) than that of the standard membrane (average TOC rejection of 95.3%, maximum TOC rejection of 97%). Preliminary efforts to optimize the pre-treatment for organics removal in order to reduce organic loading for the RO membranes confirmed that the use of granular activated carbon and use of an organic scavenger resin might not be economically feasible due to the relatively quick TOC breakthrough (8910BV, approximately 18000BV and less than 18000BV for the Filtrasorb 300, Filtrasorb 400 and organic scavenger resin, respectively). Although further investigations should still be conducted, the preliminary results indicate that it would be beneficial to also identify other options that can be further investigated for optimization of organics removal at Komati Power Station. Decline in the normalised flux as well as the evidence of biofouling were witnessed during the pilot operation suggesting that the membranes were fouled. Autopsies were performed on both membranes to identify foulants responsible for the decline in flux that was observed during the pilot study. The results did not indicate an organic foulant on the membrane surface. Biofouling should however, be monitored in the main plant as this was suspected to have resulted in the flux decline during the pilot study. The low fouling membrane demonstrated a better capability to treat the Komati raw and cooling water and would be expected to achieve lower operating costs for the plant (CIP costs and membrane replacement costs) while achieving better organics removal and it is therefore recommended that the low-fouling membranes be used at Komati Power Station as they are superior to the standard membrane and the cost of the low-fouling membranes is comparable to that of the standard membrane. While this would provide somewhat better performance than that obtained with the standard brackish water membranes, it is proposed that further investigation into pre-treatment optimization for organics removal as well as more efficient cleaning solutions be investigated to improve the performance and economics of the main water treatment plant at Komati power Station. / Dissertation (MSc)--University of Pretoria, 2013. / gm2014 / Chemical Engineering / unrestricted

Page generated in 0.0574 seconds