• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 301
  • 11
  • Tagged with
  • 312
  • 312
  • 308
  • 306
  • 50
  • 40
  • 34
  • 27
  • 26
  • 23
  • 23
  • 23
  • 18
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ruthenium(II) Polypyridyl Complexes : Applications in Artificial Photosynthesis

Johansson, Olof January 2004 (has links)
<p>Molecular mimics of PS II, which consist of a photosensitizer linked to electron acceptors/donors, are attractive candidates for the conversion of solar energy into chemical energy. Several different classes of sensitizers have been studied and among these, ruthenium(II) polypyridyl complexes continue to attract major attention. </p><p>The first part of this thesis presents the photophysical properties, stereochemistry, and general synthesis of ruthenium(II) polypyridyl complexes based on 2,2´-bipyridyl and 2,2´:6´,2´´-terpyridyl ligands. The second part deals with ruthenium(II) polypyridyl complexes linked to electron acceptors (benzoquinone, naphthalene diimide) and electron donors (phenothiazine, tyrosine, manganese complexes). Functionalized 2,2´-bipyridines and 2,2´:6´,2´´-terpyridines were synthesized and used in the stepwise assembly of the chromophore-quencher complexes. These were fully characterized and the redox properties were studied by cyclic and differential pulse voltammetry. The intramolecular charge-separated states formed after light excitation of the ruthenium(II) unit were observed by time-resolved absorption and EPR spectroscopy. </p><p>In the third part of this thesis, the synthesis and photophysical properties of a novel class of bistridentate ruthenium(II) polypyridyl complexes based on bipyridyl-pyridyl methane ligamds are discussed. The solution structures of the homoleptic and heteroleptic complexes were studied by 2D NMR techniques. The X-ray structure of one of the homoleptic complexes has been solved. The effect on the excited state lifetime for these ruthenium(II) complexes compared to the parent [Ru(tpy)<sub>2</sub>]<sup>2+</sup> is discussed. Finally, in one of the heteroleptic complexes an interesting reversible linkage iomerization was observed that could be induced either electrochemically or chemically.</p>
12

Deracemization of Functionalized Alcohols via Combined Ruthenium and Enzyme Catalysis

Fransson, Ann-Britt L. January 2006 (has links)
The major part of this thesis describes the synthesis of enantiopure alcohols and diols by combining ruthenium-catalyzed racemization or epimerization and lipase-catalyzed asymmetric transformations. A minor part of this thesis is focused on ruthenium-catalyzed redox reactions for transfer hydrogenation of 1,3-cycloalkanediketones. Kinetic resolution of racemic γ-hydroxy acid derivatives was performed via Pseudomonas cepacia lipase (PS-C)-catalyzed transesterification. γ-Hydroxy esters and γ-hydroxy amides were studied showing in higher selec-tivity and yields for the γ-hydroxy amides. The enzyme PS-C tolerates both variation in the chain length and different functionalities giving good to high enantioselectivity. Combining enzymatic kinetic resolution with a ruthenium-catalyzed racemization led to a dynamic kinetic resolution (DKR). The use of 2,4-dimethyl-3-pentanol as a hydrogen source to suppress ketone formation in the dynamic kinetic resolution increased the yields of the acetate product. The synthetic utility of this procedure was illustrated by the practical synthesis of the γ-lactone (R)-5-methyltetrahydrofuran-2-one. A distereoselective transformation of cis/trans-1,3-cyclohexandiol using Candida antarctica lipase B (CALB)-catalyzed transesterification was of interest. Desymmetrization of cis-1,3-cyclohexanediol to the (R-monoacetate was successfully accomplished. Enantiopure (R,R)-diacetate was obtained from the (R)-monoacetate in a DYKAT process at room tem-perature. Metal- and enzyme-catalyzed transformation of cis/trans-1,3-cyclohexanediol using PS-C, gives a high diastereoselectivity for cis-diacetate. The (S)-mono-acetate was obtained from cis-diacetate by CALB-catalyzed hydrolysis. In addition, it was shown, by the use of deuterium-labeling that intramolecular acyl migration does not occur in the transformation of cis-monoacetate to the cis-diacetate. Ruthenium-catalyzed transfer hydrogenation of 1,3-cyclohexanedione under microwave heating was developed as an efficient and fast method for the preparation of 1,3-cycloalkandiols.
13

Synthesis, Characterization and Application of 68Ga-labelled Peptides and Oligonucleotides

Velikyan, Irina January 2004 (has links)
The positron emitting 68Ga radionuclide (T1/2 = 68 min) has the potential of practical interest for clinical PET. The metallic cation, 68Ga3+, is suitable for complexation reactions with chelators either naked or conjugated with macromolecules such as peptides and oligonucleotides. Such labeling procedures require pure and concentrated radiometal preparations, which cannot be sufficiently fulfilled by the presently available 68Ge/68Ga generator eluate. This thesis presents a method to increase the concentration and purity of 68Ga obtained from a commercial 68Ge/68Ga generator. DOTATOC (DOTA = 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid, TOC = D-Phe1-Tyr3–Octreotide) was used as a test molecule for comparing the labeling properties of different 68Ga preparations. In addition, DOTA-RDG (RGD = Cys2-6; c[CH2CO-Lys(DOTA)-Cys-Arg-Gly-Asp-Cys-Phe-Cys]-CCX6-NH2) and NODAGATATE (NODAGA = 1,4,7-triazacyclononane-1,4,7-triacetic, TATE = Tyr3 - Octreotate) were used to prove the concept. The use of the concentrated and purified 68Ga eluate along with microwave activation allowed quantitative 68Ga-labelling of peptide conjugates of ≤1 nanomolar quantities within 10 min. The specific radioactivity of the radiolabelled peptides was improved by a factor of &gt;100 compared to previously applied techniques using non-treated generator eluate and conventional heating. A commercial 68Ge/68Ga generator in combination with this method for purification, concentration and microwave activated labeling resulted in a kit technology for 68Ga-tracer production.Four 17-mer oligonucleotides modified and functionalised with an hexylamine group in the 3'- or 5'- position were conjugated with DOTA and labelled with 68Ga using microwave activation. Chemical modification of the oligonucleotide backbone or sugar moiety did not influence the labelling nor the hybridisation ability of the oligonucleotides. However, the radioactivity organ biodistribution in rats differed dependent on the oligonucleotide structure. This indicated that metabolism and non-specific binding were affected by the backbone and sugar moiety structure.
14

Synthesis, structure and conformation of oligo- and polysaccharides

Larsson, Andreas January 2004 (has links)
Carbohydrates are a complex group of biomolecules with a high structural diversity. Their almost omnipresent occurrence has generated a broad field of research in both biology and chemistry. This thesis focuses on three different aspects of carbohydrate chemistry, synthesis, structure elucidation and the conformational analysis of carbohydrates. The first paper describes the synthesis of a penta- and a tetrasaccharide related to the highly branched capsular polysaccharide from Streptococcus pneumoniae type 37. In the second paper, the structure of the O-antigenic repeating unit from the lipopolysaccharide of E. coli 396/C1 was determined along with indications of the structure of the biological repeating unit. In addition, its structural and immunological relationship with E. coli O126 is discussed. In the third paper, partially protected galactopyranosides were examined to clarify the origin of an intriguing 4JHO,H coupling, where a W-mediated coupling pathway was found to operate. In the fourth paper, the conformation of methyl a-cellobioside is studied with a combination of molecular dynamics simulations and NMR spectroscopy. In addition to the expected syn-conformation, detection and quantification of anti-ø and anti-ψ conformers was also possible.
15

Ruthenium-catalyzed hydrogen transfer involving amines and imines : Mechanistic studies and synthetic applications

Samec, Joseph S M January 2005 (has links)
This thesis deals with ruthenium-catalyzed hydrogen transfer involving amines and imines and is divided into two parts. In Part 1 a mechanistic study has been performed. The complexation of the imine to the catalyst and the decomplexation patterns of the formed ruthenium-amine complexes, isotope studies, and exchange studies show that the mechanism of the hydrogen transfer involving amines and imines is different from the hydrogen transfer involving alcohols and carbonyls. In Part 2 synthetic applications of the hydrogen transfer is presented. First the rutheniumcatalyzed transfer hydrogenation of imines by 2-propanol in an unpolar solvent was investigated. The corresponding amines were isolated in good to excellent yields. Even imines bearing labile functional groups were smoothly transferred to amines with very low catalyst loadings and short reaction times employing microwave heating. Then the reverse reaction, transfer dehydrogenation of amines to imines, was investigated using either MnO2 or oxygen as terminal oxidant. Important products such as aldimines, ketimines, and non benzylic anilines were prepared in the aerobic oxidation. We also demonstrated that the aerobic oxidation is compatible with proline-mediated organocatalysis, yielding amines in high yields and ee:s. Finally the racemization of chiral amines was investigated. A cumbersome side product formation was investigated and hampered by the use of a mild hydrogen donor, giving a mild and efficient racemization process for both primary and secondary amines.
16

Synthesis of Oligosaccharides for Interaction Studies with Various Lectins

Gemma, Emiliano January 2005 (has links)
In this thesis, the syntheses of oligosaccharides for interaction studies with various lectins are described. The first section reports the syntheses of tetra, tri- and disaccharides corresponding to truncated versions of the glucosylated arm of Glc1Man9(GlcNAc)2, found in the biosynthesis of N-glycans. The thermodynamic parameters of their interaction with calreticulin, a lectin assisting and promoting the correct folding of newly synthesised glycoproteins, were established by isothermal titration calorimetry. In the second section, a new synthetic pathway leading to the same tetra- and trisaccharides is discussed. Adoption of a convergent strategy and of a different protecting group pattern resulted in significantly increased yields of the target structures. The third section describes the syntheses of a number of monodeoxy-trisaccharides related to the above trisaccharide Glc-α-(1→3)-Man-α-(1→2)-Man-α-OMe. Differentsynthetic approaches were explored and the choice of early introduction of the deoxy functionality proved the most beneficial. In the last section, the synthesis of spacer-linked LacNAc dimers as substrates for the lectins galectin-1 and -3 is presented. This synthesis was realized by glycosidation of a number diols with peracetylated LacNAc-oxazoline. Pyridinium triflate was tested as a new promoter, affording the target dimers in high yields. This promoter in combination with microwave irradiation gave even higher yields and also shortened the reaction times.
17

Synthesis of oligosaccharides related to the capsular polysaccharide of Neisseria meningitidis serotype A

Teodorovic, Peter January 2005 (has links)
In order to find suitable stable vaccine candidates against Neisseria meningitidis group A, several structures related to the capsular polysaccharide have been synthesised. The first part of the thesis describes the synthesis of C-phosphonate analogues starting from glucose. The key step is a Mitsunobu coupling of a methyl C-phosphonate monomer to the 6-hydroxyl group of a 2-acetamido mannose derivative. Contained within this work is a description of an improved synthesis of 2-azido-2-deoxy-D-mannopyranose. The second part outlines the synthesis of structural elements present in the native capsular polysaccharide of Neisseria meningitidis serotype A including different acetylation and phosphorylation patterns. The final chapter describes an improved synthesis of the Lewis b hexasaccharide needed for purification of and interaction studies with the Helicobacter pylori adhesin BabA.
18

Synthesis of Structures Related to Antifreeze Glycoproteins

Fyrner, Timmy January 2005 (has links)
In this thesis, synthesis of structures related to antifreeze glycoproteins (AFGPs) are presented. Synthetic routes to a protected carbohydrate derivative, 2,3,4,6-tetra-O-benzyl-β-galactopyranosyl-(1→3)-2-deoxy-2-azido-4,6-di-O-benzyl-β-D-thio-1-galactopyranoside, and a tBu-Ala-Thr-Ala-Fmoc tripeptide, are described. These compounds are meant to be used in the assembly of AFGPs and analogues thereof. A Gal-GlcN disaccharide was synthesized via glycosylation between the donor, bromo-2-O-benzoyl-3,4,6-tri-O-benzyl-α-Dgalactopyranoside, and acceptor, ethyl 4,6-O-benzylidene-2-deoxy-2-N-phthalimido-β-D-1-thio-glucopyranoside, using silver triflate activation. Subsequent epimerization to a Gal-GalN disaccharide was achieved using Moffatt oxidation followed by L-selectride® reduction. The tripeptide was synthesized in a short and convenient manner using solid phase peptide synthesis with immobilized Fmoc-Ala on Wang® resins as starting point.
19

Design and Synthesis of Inhibitors Targeting the Aspartic Proteases HIV-1 PR and BACE-1

Adrian Meredith, Jenny January 2009 (has links)
This thesis describes the synthesis of molecules designed for inhibition of two aspartic proteases, viral HIV-1 PR and human BACE-1. It also reports on the structure activity relationships of the targeted enzyme inhibitors. It is estimated that currently 33 million people are infected with HIV, the causative agent of AIDS. The virus targets T-lymphocytes and macrophages of the human immune system. The HIV-1 PR plays an important role in the viral replication, and by inhibiting the enzyme the disease progression can be slowed down or even halted. Herein is reported the design and synthesis of a series of HIV-1 PR inhibitors with novel P2 substituents of which several inhibit the enzyme in the nanomolar range. The aim of the second work was to further develop the inhibitors by the introduction of fluorine. Several attempts were performed to fluorinate different P2-substituents. Alzheimer’s disease (AD) is neurodegenerative, progressive and fatal disorder of the brain. It is associated with accumulation of plaques and tangles that cause impairment and functional decline of brain tissue which result in loss of memory and cognition. The plaques are mainly constituted of amyloid-β peptides that are generated in two steps from the amyloid precursor protein (APP). The cleavage sequence is initiated by the aspartic protease BACE-1, which makes the enzyme a key target in the effort of finding a therapy that aim to slow down the progression of AD. Herein are enclosed the development of two series of potent BACE-1 inhibitors. In the first work a synthetic strategy was developed to truncate a previously reported hydroxyethylene core structure in order to generate more drug-like inhibitors. This generated a series of truncated inhibitors where two amide bonds have been replaced with an ether - or alternatively a secondary amine linkage. A number of these inhibitors show potency against BACE-1. In the second part of the work the aim was investigate the effect of alterations in the P1 position. Five scaffolds with new P1 substituents were designed, synthesized and coupled with two different P2-P3 substituents. This resulted in a series of potent inhibitors that inhibit BACE-1 in the nanomolar range. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Submitted. Paper 2: Submitted. Paper 3: Manuscript.
20

Design and Synthesis of Amine Building Blocks and Protease Inhibitors

Ayesa Alvarez, Susana January 2008 (has links)
The first part of this thesis addresses the design and synthesis of amine building blocks accomplished by applying two different synthetic procedures, both of which were developed using solid-phase chemistry. Chapter 1 presents the first of these methods, entailing a practical solid-phase parallel synthesis route to N-monoalkylated aminopiperidines and aminopyrrolidines achieved by selective reductive alkylation of primary and/or secondary amines. Solid-phase NMR spectroscopy was used to monitor the reactions for which a new pulse sequence was developed. The second method, reported in Chapter 2, involves a novel approach to the synthesis of secondary amines starting from reactive alkyl halides and azides. The convenient solid-phase protocol that was devised made use of the Staudinger reaction in order to accomplish highly efficient alkylations of N-alkyl phosphimines or N-aryl phosphimines with reactive alkyl halides. The second part of the thesis describes the design and synthesis of three classes of protease inhibitors targeting the cysteine proteases cathepsins S and K, and the serine protease hepatitis C virus (HCV) NS3 protease. Chapter 4 covers the design, solid-phase synthesis, and structure-activity relationships of 4-amidofurane-3-one P1-containing inhibitors of cathepsin S and the effects of P3 sulfonamide groups on the potency and selectivity towards related cathepsin proteases. This work resulted in the discovery of highly potent and selective inhibitors of cathepsin S. Two parallel solid-phase approaches to the synthesis of a series of aminoethylamide inhibitors of cathepsin K are presented in Chapter 5. Finally, Chapter 6 reports peptide-based HCV NS3 protease inhibitors containing a non-electrophilic allylic alcohol moiety as P1 group and also outlines efforts to incorporate this new template into low-molecular-weight drug-like molecules.

Page generated in 0.0615 seconds