• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 232
  • 117
  • 29
  • 15
  • 14
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 597
  • 104
  • 101
  • 93
  • 89
  • 85
  • 82
  • 80
  • 59
  • 51
  • 48
  • 45
  • 44
  • 37
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Subtidal concrete piling fauna in Monterey Harbor, California

Donat, Winfield. January 1975 (has links)
Thesis (M.S.)--Naval Postgraduate School, 1975. / Includes bibliographical references (leaves 82-83).
62

Investigations of secondary metabolites from marine organisms

Mostafa, Wael M. Abdel-Mageed. January 2009 (has links)
Thesis (Ph.D.)--Aberdeen University, 2009. / Title from web page (viewed on Dec. 2, 2009). Includes bibliographical references.
63

Chemical mediation of fouling in seaweeds /

Nylund, Göran M. January 2005 (has links)
Thesis (Doctoral)--Göteborg Univ., 2005. / Includes bibliographical references.
64

A structural analysis of fouling community development in the Damariscotta River estuary Maine

Field, Bryan D January 1979 (has links) (PDF)
No description available.
65

Soil enzymes as indicators of perturbations in the rhizosphere

Naseby, David Craig January 1996 (has links)
Most attempts to monitor the effects of introductions of Genetically Modified Micro-organisms (GMMs) have centred on the enumeration of specific populations. However for a significant perturbation to be measured, changes of between 100% and 300% (0.3 and 0.5 on a log scale) are necessary for the impact to be significant. Standard population measurements, assessing the survival, dissemination and effect on total indigenous populations do not give an indication of the functioning of the ecosystem. A range of soil enzyme assays have been developed as alternatives to population measurements. Assays for determining chitobiosidase, N-acetyl glucosaminidase, beta-glucosidase, beta-galactosidase, acid phosphatase, alkaline phosphatase, phosphodiesterase, aryl sulphatase and urease activities from small soil samples were developed. These assays were employed to assess the impact of microbial inoculation into the rhizosphere of crop plants and compared to traditional microbial population measurements. The impact of a chromosomally modified Pseudomonas fluorescens (SBW25) in the wheat rhizosphere using a large intact core microcosm was studied with a combined substrate addition of urea, colloidal chitin and glycerophosphate. The substrate addition caused an increase in the soil chitobiosidase, N-acetyl glucosaminidase aryl sulphatase and urease activities but did not affect acid and alkaline phosphatase and phosphodiesterase activity. Seed inoculated with P. fluorescens caused significant increases in rhizosphere chitobiosidase and urease activities and a significant decrease in alkaline phosphatase activity. Inoculation with the bacteria in the presence of substrate gave opposing effects to those treatments without substrate addition. Using these enzyme assays perturbations of less than 20% could be detected. Two strains of Pseudomonas fluorescens were compared in microcosm experiments one with a functional modification of strain F113 with repressed production of the antibiotic 2,4-diacetylphloroglucinol (DAPG), to create the DAPG negative strain F113 G22. The other, SBW25 EeZY 6KX, with nonfunctional modifications consisting of marker genes (LacZY, xylE and kan') only. Both were assessed, along with the corresponding wild types (F113 and SBW25), for their effects upon the indigenous microflora, plant growth and rhizosphere soil enzyme activities. Significant perturbations were found in the indigenous bacterial population structure, with the F113 (DAPG+) strain causing a shift towards slower growing colonies (K strategists). The DAPG+ strain also significantly reduced, in comparison with the other inocula, the total Pseudomonas populations. The survival of the F113 strains were an order of magnitude lower than the SBW25 strains. The DAPG+ strain caused a significant decrease in the shoot to root ratio in comparison to the control and other inoculants. The F113 (DAPG+) inocula resulted in higher alkaline phosphatase, phosphodiesterase and aryl sulphatase activities than the other inoculants and lower beta glucosidase, beta galactosidase and N-acetyl glucosaminidase activities. These results indicate that the soil enzymes are extremely sensitive to perturbations in the rhizosphere ecosystem and are sensitive enough to measure the impact of GMM inoculation.
66

Active biomonitoring (ABM) of the Rietvlei Wetland System using antioxidant enzymes, non-enzymatic antioxidants and histopathology as biomarkers

Mlambo, Sibonani Sandra 14 October 2008 (has links)
M.Sc. / The main objective of this study was to perform active biomonitoring in the Rietlvlei Wetland System. Active biomonitoring, which can be defined as “the translocation of organisms from one place to another and quantifying their biochemical, physiological and/or organismal responses for the purpose of water quality monitoring” (De Kock and Kramer, 1994), has several advantages over the chemical monitoring system. Effluents often are complex and poorly characterized mixtures of a large number of chemicals. A combination of many chemicals being present in very small amounts (even below detection limits) can have a substantial impact on organisms, and a chemical-based approach may not identify the source of pollution nor will effect of synergism or antagonism be taken into account (Smolders et al., 2003). A suite of biomarkers of oxidative stress and histopathology were investigated in the fish Oreochromis mossambicus and the mollusk Melanoides tuberculata. The organisms were bred under laboratory conditions. They were deployed during the high-flow and low-flow periods, in cages at three sites down the flow gradient of the Rietvlei wetland system, to determine spatial and temporal variations in biomarker responses and general water chemistry in the system. The oxidative stress biomarkers analyzed were catalase (CAT), superoxide dismutase (SOD), peroxidase (GPx), as well as levels of reduced glutathione (GSH) and lipid peroxidation as malondialdehyde (MDA). There was evidence of presence of chemicals inducing oxidative stress in the organisms as indicated by the high levels of MDA, GSH and GPx. Induction of CAT and SOD was not substantial due to possible inhibitory factors. This study established that organism transplantation is a feasible strategy for biomonitoring. Overall, no distinct variations were observed in the spatial and temporal comparisons in all the biomarker responses. The findings of this investigation also provide a basis for further investigation into the application of these biomarkers in ecological risk assessment. / Dr. V. Wepener
67

Anthropogenic Effects on the Fouling Community: Impacts of Biological Invasions and Anthropogenic Structures on Community Structure

McClees, Whitney Elizabeth 10 August 2017 (has links)
Coastal anthropogenic infrastructure has significantly modified nearshore environments. Because these structures often have a strong association with shipping as would be found in ports and harbors, they have been identified as invasion hotspots. Due to propagule pressure from shipping and recreational boating and suitable uncolonized substrate that provides a refuge from native predators, a greater number of non-native species have been found on these structures compared to nearby natural substrate. The mechanisms that limit the spread of non-native species from anthropogenic structures to natural substrate have been explored for several taxa at a species-specific level, but less so from an overall community perspective. Predation has been identified as one of the biotic interactions limiting invasion success. In addition to predation, dispersal ability may also prevent the spread of non-native species from anthropogenic structures to natural substrate. This thesis addresses how these two mechanisms interact to limit the spread of non-native species from anthropogenic structures to natural substrate and how that alters overall community composition. I aimed to explore differences between communities inside and outside of a marina and determine the extent to which predator and dispersal limitation were structuring these communities. I used a three-factor design, deploying seven unglazed ceramic tiles per each treatment combination of 1) inside versus outside a marina in Yaquina Bay, Oregon; 2) cage keeping out predators greater than the mesh size, no cage, or partial cage; 3) fixed near the substrata (benthic) versus suspended 1 meter below the surface. I also transplanted caged, suspended tiles of either adults or recruits from inside the marina to benthic and suspended caging treatments outside of the marina. These tiles allowed me to examine predation when dispersal limitation was not a factor for the community inside the marina, i.e. what happens to both recruits and adults if they can get outside of the marina. I found that the communities inside and outside of the marina were different and the data suggest that both predation and dispersal limitation interact to limit the spread of non-native species. Additionally, I found that mesopredators that could fit through the caging may be influencing predation results and community structure. This research addresses gaps in scientific knowledge regarding the mechanisms that prevent or facilitate the spread of non-native species. Future work could include the further exploration of mesopredation as an important factor in limiting the spread of non-native species and exploring dispersal limitation more in depth as well as broadening the geographic scope to see if the same trends hold true across bays and bioregions.
68

Biofouling of mariculture cages in Hong Kong

Mak, Mo-shun, Paul., 麥慕舜. January 1982 (has links)
published_or_final_version / Zoology / Doctoral / Doctor of Philosophy
69

The epibenthic colonization of artificial subtidal habitats at the Cape d'Aguilar Marine Reserve, Hong Kong

Hawkins, Susan Terry. January 1998 (has links)
published_or_final_version / Ecology and Biodiversity / Doctoral / Doctor of Philosophy
70

Temperature-dependent toxic effects of selected chemicals on marine organisms

Li, Jing, Adela, 李晶 January 2014 (has links)
Anthropogenically driven climate change not only results in rising of sea temperature but also leads to more frequent and longer-lasting cold and heat waves. Meanwhile, coastal marine ecosystems are constantly challenged by increasing threats of chemical pollution. Temperature and chemical stressors can jointly affect the livelihood of marine organisms, but their combined effects are still poorly understood. Therefore, this study aimed to investigate the effects of thermal stress and chemical exposure on the marine medaka Oryzias melastigma, copepod Tigriopus japonicus and rotifer Brachionus koreanus. The four selected chemical contaminants included copper sulphate pentahydrate (Cu), dichlorophenyltrichloroethane (DDT), triphenyltin chloride and copper pyrithione. It was hypothesized that marine organisms are more susceptible to chemical exposure at both cold and warm extremes. In vivo acute ecotoxicity tests were conducted over a wide temperature range to ascertain the relationship between thermal stress and chemical toxicity. For O. melastigma larvae, the lowest toxicity occurred at an optimum temperature range; the chemical toxicity further increased with temperature increase or decrease from this optimum, and exacerbated at extremely low and high temperatures. For T. japonicus and B. koreanus, the chemical toxicity generally increased with increasing temperature. Such inter-species dissimilarities were possibly due to differences in the uptake route, detoxification mechanism, avoidance behaviour and physiological response between the fish and the copepod or rotifer. Experiments were conducted to evaluate the temperature-dependent physiological and biochemical responses, and thermal tolerance of O. melastigma larvae. The growth in the fish larvae showed an inverse and negatively skewed V-shape relationship with temperature, with a significant reduction in performance at both low and high thermal extremes. A mismatch between demand and supply of oxygen and energy under extremely cold and warm conditions was probably the primary cause of growth inhibition and metabolic impairment, leading to a temporary adaptation by a shift to anaerobiosis and an induction of heat shock proteins (HSPs). Temperatures at both cold and warm extremes increased toxicities of DDT and Cu to O. melastigma larvae, resulting in restricted growth and interrupted oxygen consumption rate. The fish larvae modulated their metabolic pathway and produced stress proteins (i.e., HSPs and metallothioneins) for adaptation to the combined stress. However, such responses were disrupted by combinations of thermal extremes, in particular high temperature, and high chemical concentration. Most importantly, both DDT and Cu exposure significantly reduced the thermal tolerance of the fish larvae. The interacting effect of temperature and Cu was also investigated on T. japonicus. The results showed that their combined effect could significantly reduce the survival, lengthen the developmental time and change the sex ratio of the copepod. Transcriptions of several stress-related genes (i.e., glutathione reductase, glutathione S-transferases and HSPs) in the adult T. japonicus were significantly affected by the joint-effect of temperature and Cu exposure, implying that these genes played essential roles in protecting the cellular integrity against the stresses. This study advanced the understanding on the temperature-dependent toxicity of chemical contaminants to marine organisms, and provided valuable information and empirical models for deriving water quality criteria of chemical contaminants at various temperatures. / published_or_final_version / Biological Sciences / Doctoral / Doctor of Philosophy

Page generated in 0.0337 seconds