• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation Of A Novel Magnesium And Acidified Ethanol System For The Degradation Of Persistent Organic Pollutants

Maloney, Phillip 01 January 2013 (has links)
For centuries chemists have sought to improve humankind’s quality of life and address many of society’s most pressing needs through the development of chemical processes and synthesis of new compounds, often with phenomenal results. Unfortunately, there also are many examples where these chemicals have had unintended, detrimental consequences that are not apparent until years or decades after their initial use. There are numerous halogenated molecules in this category that are globally dispersed, resistant to natural degradation processes, bioaccumulative, and toxic to living organisms. Chemicals such as these are classified as persistent organic pollutants (POPs), and due to their negative environmental and health effects, they require safe, effective, and inexpensive means of remediation. This research focuses on the development and optimization of a reaction matrix capable of reductively dehalogenating several POPs. Initial experiments determined that powdered magnesium and 1% V/V acetic acid in absolute ethanol was the most effective system for degrading polychlorinated biphenyl (PCB), an extraordinarily recalcitrant environmental contaminant. Further studies showed that this matrix also was capable of degrading polychlorinated dibenzo-p-dioxins (PCDDs), polybrominated diphenyl ethers (PBDEs), and four organochlorine pesticides (OCPs); dieldrin, heptachlor, heptachlor epoxide, and chlordane. During this phase of testing, field samples contaminated with chlordane were washed with ethanol and this ethanol/chlordane solution was degraded using the same reaction matrix, thereby demonstrating this technology’s potential for “real-world” remediation projects. Finally, a set of experiments designed to provide some insight into the mechanism of dechlorination seems to indicate that two distinct processes are necessary for degradation to occur. First, the passivated iv outer layer of the magnesium must be removed in order to expose the zero-valent magnesium core. Next, an electron is transferred from the magnesium to the target molecule, causing the cleavage of the halide bond and the subsequent abstraction of either a hydrogen or proton from a solvent molecule. It is anticipated that an understanding of these fundamental chemical processes will allow this system to be tailored to a wide range of complex environmental media

Page generated in 0.2268 seconds