• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 5
  • 1
  • Tagged with
  • 25
  • 24
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis and use of nitrogen heterocycles in metal mediated reactions

Illesinghe, Jayamini P. M. January 2004 (has links)
Abstract not available
22

SPECTROSCOPY AND STRUCTURES OF Cu-ORGANONITROGEN COMPLEXES

Wang, Xu 01 January 2007 (has links)
Copper-organonitrogen complexes are studied by threshold photoionization and zero electron kinetic energy photoelectron spectroscopy. These complexes are prepared in pulsed laser vaporization supersonic molecular beams. Adiabatic ionization energies of the neutral species and vibrational frequencies of the neutral and ionic complexes were measured. Metal-ligand bond dissociation energies were obtained from the theoretical calculations or the experiments. More importantly, by combining the spectroscopic measurements, quantum chemical calculations, and spectral simulations, metal-ligand bonding structures are determined for copper complexes of diamines, pyridine, diazines, aminopyridines, polypyridines, and imidazole. The Cu-ethylenediamine, -(1,3-propanediamine), and -(1,4-butenediamine) complexes have been determined to be in a hydrogen-bond stabilized monodentate configuration. However, Cu atom binds to both two nitrogens in the methyl-substituted ethylenediamines. The change of the Cu binding from the monodentate to the bidentate mode arises from the competition between copper coordination and hydrogen bonding. Although pyridine, diazines, and imidazole molecules can function as a s-donor through the nitrogen atom, a p-acceptor or p-donor through six-membered or five-membered aromatic ring, only the s bonding mode is predicted by the theory and identified by the ZEKE spectroscopy. For aminopyridine molecules, s bonding through the sp2 or sp3 hybrid electron lone pair and p bonding through the pyridine ring are possible. Yet, the s bonding through the sp2 electron donation is calculated to be the strongest, and the Cuaminopyridine complexes formed by such bonding mechanism are identified by the experiments. Moreover, monodentate Cu-(4,4'-bipyridine), bidentate Cu-(2,2'-bipyridine) and Cu-(1,10-phenanthroline), and tridentate Cu-(2,2':6',2?-terpyridine) are established to be the most stable structure and are observed by experiments. It is surprising to find that the tridendate planar structure of Cu-(2,2':6',2?-terpyridine) changes to a twisted Cs structure upon ionization.
23

Bioavailability of dissolved organic nitrogen from natural resources and wastewater eflluent mutrient limitation on the lower Truckee River /

Bertrando, Neil. January 2008 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2008. / "December, 2008." Includes bibliographical references (leaves 32-35). Online version available on the World Wide Web.
24

Mechanistic studies of azolium ions and their role in organocatalysis

Collett, Christopher J. January 2013 (has links)
This thesis describes our physical organic and mechanistic investigations into N Heterocyclic Carbene (NHC) mediated organocatalytic transformations, through a collaboration with the research group of Dr AnnMarie O'Donoghue and PhD student Richard Massey at Durham University. Initial research focused upon the determination of kinetic acidities and associated pKₐ values for a range of triazolium salts using C(3) H/D exchange, monitored by ¹H NMR spectroscopy. Estimates for pKₐ values in the range 16.6 17.4 were obtained, which are some ~2 and ~3 5 pK units lower than analogous imidazolium and thiazolium species respectively, with modest N substituent (0.3 pK units) effects observed. At lower pD values, an altered pD dependence indicates a dicationic triazolium species is formed (through N(1) protonation) with an estimated pKₐᴺ¹ of -0.2-0.5 and C(3) H pKₐ values at least 2 units lower than their monocationic analogues. This methodology was subsequently extended to mesoionic NHCs, where pKa values of 23.0 27.1 for a range of triazolium and 30.2 31.0 for a range of imidazolium salts were estimated. A detailed study of the NHC catalysed intramolecular Stetter reaction was also undertaken using ¹H NMR spectroscopy. A range of 3 (hydroxybenzyl)azolium salts (adducts), formed from the addition of NHC to aldehyde were isolated, enabling the generation of reaction profiles and the determination of rate constants. The reaction proceeds via rapid and reversible adduct generation, followed by rate limiting Breslow intermediate formation, with electron withdrawing N aryl substituents increasing the rate of product formation. Consistent with rate limiting deprotonation, deuterium exchange studies of O methylated adduct analogues found electron withdrawing N-aryl units gave faster exchange. Examination of the equilibrium constants for adduct formation revealed that both in the case of NHCs bearing 2,6 disubstituted N aryl units and aldehydes bearing a 2 ether substituent, the equilibrium position is significantly shifted towards adduct. Finally, studies at sub-stoichiometric NHC concentrations, monitored by HPLC, imply the reaction is first order with respect to NHC precursor, but zero order in aldehyde, again indicative of rate limiting deprotonation.
25

The Production of Organic Nitrates in Portland Oregon and the Columbia River Gorge

Neill, Holly Ann 08 April 2013 (has links)
This work studied the production of aerosol-phase organic nitrates in both Portland and the Columbia River Gorge (CRG). Ozone and NOx species were investigated for correlation with organic nitrate aerosol, as they function as precursors to the production of organic nitrates. These ambient gas-phase measurements were collected in the same locations as high-volume (Hi-Vol) filters samples, in an urban and rural gorge setting to investigate correlations at the origin of the pollution plume and downwind. A novel Soxhlet extraction method for Hi-Vol filters was developed based on literature and EPA standard methods. Analysis for nitrate production was done by segregating data based on times when the wind blew out of Portland and down the CRG versus times when flow was not westerly. Filters were then compared to ambient gas-phase measurements and derived NO3 radical production rates to look for trends. Wind direction had a strong influence on the concentrations of precursor molecules in the CRG. On days with a westerly wind direction into the gorge, concentrations of the measure aerosol organic nitrates were similar at both sides. This suggests some contribution of a broader regional production of organic nitrates. There was some correlation between the production rate of NO3 radicals and the measured organic nitrate aerosol, suggesting a role for NO3 + VOC production of organic nitrates that later partition to the aerosol phase. This information will better illuminate the fate of nitrogen downwind of pollution sources. The information will also help to create a better understanding of the way topography and meteorological conditions can influence the flow of pollution. Understanding the downwind oxidative chemistry that happens in the CRG would better support both pollution prevention and mitigation efforts.

Page generated in 0.1069 seconds