Spelling suggestions: "subject:"organosilicate"" "subject:"organosiliciés""
1 |
Echanges d’anions sur ionosilices : de l'élaboration des matériaux aux études physicochimiques et leurs applications en séparation et catalyse / Anion exchange with ionosilicas : from materials elaboration towards physicochemical characterizations and their applications in separation and catalysisThach, Ut Dong 18 November 2016 (has links)
L'objectif de cette thèse est le développement de nouveaux échangeurs d'anions à base d’ionosilices. Différents matériaux contenant des entités ammoniums ont été synthétisés par la procédure d'hydrolyse-polycondensation à partir de précurseurs silylés d'ammonium. Ces solides, présentant différentes textures, différentes architectures ou des morphologies ont été obtenus en faisant varier des paramètres de réaction, comme par exemple la nature du tensioactif utilisé. Outre les caractérisations structurales et texturales (adsorption-désorption d’azote, DRX, MET / MEB), nous nous sommes concentrés sur les analyses plus détaillée des propriétés physico-chimiques de ces ionosilices. En particulier, elles présentent une contribution hydrophile élevée par rapport aux silices mésoporeuses classiques ou les organosilices du type PMO (Periodic Mesoporous Organosilica). En outre, ces propriétés interfaciales d’hydrophilie peuvent être modulées soit par l'utilisation de différents précurseurs d'ammonium, soit par l'incorporation par échange d'anions hydrophobes. Enfin, nous avons utilisé ces nouveaux matériaux pour la rétention d’espèces anioniques en milieu aqueux. Nos études montrent que ces ionosilices sont des échangeurs d'anions très efficaces présentant une capacité d'adsorption de Cr (VI) élevée (jusqu’à 2.5 mmol g-1). Ces matériaux possèdent également une capacité d’adsorption d’iodure élevée combinée à une bonne stabilité radiolytique pour des applications de rétention de radionucléides. Des résultats similaires ont été obtenus pour des polluants organiques anioniques tels que les principes actifs (le diclofénac, le sulindac et le p-aminosalicylate) ou des colorants (méthyl orange). Outre le grand potentiel d’application de ces matériaux dans les procédés de séparation, cette étude donne un aperçu intéressant de la morphologie des matériaux grâce à l'accessibilité presque complète des sites cationiques. Toutes ces caractéristiques font de ces matériaux des systèmes de choix pour les applications dans le traitement de l’eau polluée, le stockage à long terme des déchets radioactifs et en tant que support de catalyseur. / The objective of this thesis is the development of new anion exchangers based on ionosilica materials. Various materials containing ammonium groups were synthesized by template directed hydrolysis-polycondensation reactions starting from silylated ammonium precursors. Solids displaying different textures, architectures and morphologies were obtained via the modifications of reaction parameters, such as the nature of the used surfactant. Besides the standard structural and textural characterizations (N2 adsorption, XRD, TEM / SEM), we focused on a more detailed physico-chemical analysis of these original and innovative materials. Ionosilicas show an unusually high hydrophilicity compared to classical mesoporous silica or organosilicas of the PMO-type (Periodic Mesoporous Organosilica). Furthermore, the hydrophilicity of ionosilicas can be finely tuned either by the use of various ammonium precursors or the incorporation via exchange of hydrophobic anions. Finally, we used these new anion exchangers for the removal of various anionic species in aqueous media. Our studies show that ionosilicas are highly efficient anion exchanger displaying high capacity for the adsorption of Cr (VI) (up to 2.5 mmol g-1). These materials exhibit also high capacity of iodide combined with high radiolytic stability for radionuclides uptake. Similar results were obtained for organic anionic pollutants, e.g. drugs (diclofénac, sulindac and p-aminosalicylate) and dyes (methyl orange). Besides the high potential of these materials in separation processes, this study gives interesting insights in the materials morphology through the nearly complete accessibility of the cationic sites. All these features make ionosilicas materials of choice for solid-liquid separation processes in water treatment, depollution of industrial wastewater, the nuclear fuel cycle or catalytic support.
|
Page generated in 0.0571 seconds