• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 5
  • 2
  • 1
  • Tagged with
  • 70
  • 59
  • 9
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The chemistry of organic disulfides; desulfurizations with aminophosphines.

Gleason, John Gerald. January 1970 (has links)
No description available.
22

Reaction of some chelating thioesters with chlorotris (triphenylphosphine) rhodium (I) : a model of the initial stages of hydrodesulfurization

Uhm, Hae Won January 1986 (has links)
No description available.
23

Studies in synthetic organosulfur chemistry

Vines, S. Martin January 1976 (has links)
No description available.
24

The preparation and characterization of cyclopendatienyl-triacarbnyl-tungsten complexes containing catenated polysulfur ligands /

Hartgerink, Judy. January 1981 (has links)
No description available.
25

The preparation and characterization of cyclopendatienyl-triacarbnyl-tungsten complexes containing catenated polysulfur ligands /

Hartgerink, Judy. January 1981 (has links)
No description available.
26

The chemistry of organic disulfides; desulfurizations with aminophosphines.

Gleason, John Gerald. January 1970 (has links)
No description available.
27

Reaction of some chelating thioesters with chlorotris (triphenylphosphine) rhodium (I) : a model of the initial stages of hydrodesulfurization

Uhm, Hae Won January 1986 (has links)
No description available.
28

Studies in synthetic organosulfur chemistry

Vines, S. Martin January 1976 (has links)
No description available.
29

Oxidative desulfurization of fuel oils-catalytic oxidation and adsorptive removal of organosulfur compounds

Ogunlaja, Adeniyi Sunday January 2014 (has links)
The syntheses and evaluation of oxidovanadium(IV) complexes as catalysts for the oxidation of refractory organosulfur compounds in fuels is presented. The sulfones produced from the oxidation reaction were removed from fuel oils by employing molecularly imprinted polymers (MIPs). The oxidovanadium(IV) homogeneous catalyst, [V ͥ ͮ O(sal-HBPD)], as well as its heterogeneous polymer supported derivatives, poly[V ͥ ͮ O(sal-AHBPD)] and poly[V ͥ ͮ O(allylSB-co-EGDMA)], were synthesized and fully characterized by elemental analysis, FTIR, UV-Vis, XPS, AFM, SEM, BET and single crystal XRD for [V ͥ ͮ O(sal-HBPD)]. The MIPs were also characterized by elemental analysis, FTIR, SEM, EDX and BET. The catalyzed oxidation of fuel oil model sulfur compounds, thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT), was conducted under batch and continuous flow processes at 40°C by using tert-butylhydroperoxide (t-BuOOH) as oxidant. The continuous flow oxidation process presented the highest overall conversions and very high selectivity for sulfones. Maximum oxidation conversions of 71%, 89%, 99% and 88% was achieved for TH, BT, DBT and 4,6-DMDBT respectively when poly[V ͥ ͮ O(allylSB-co-EGDMA)] was employed at a flow-rate of 1 mL/h with over 90% sulfone selectivity. The process was further applied to the oxidation of hydro-treated diesel containing 385 ± 4.6 ppm of sulfur (mainly dibenzothiophene and dibenzothiophene derivatives), and this resulted to a high sulfur oxidation yield (> 99%), thus producing polar sulfones which are extractible by polar solid phase extractants. Adsorption of the polar sulfone compounds was carried-out by employing MIPs which were fabricated through the formation of recognition sites complementary to oxidized sulfur-containing compounds (sulfones) on electrospun polybenzimidazole (PBI) nanofibers, cross-linked chitosan microspheres and electrospun chitosan nanofibers. Adsorption of benzothiophene sulfone (BTO₂), dibenzothiophene sulfone (DBTO₂) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO₂) on the various molecularly imprinted adsorbents presented a Freundlich (multi-layered) adsorption isotherm which indicated interaction of adsorbed organosulfur compounds. Maximum adsorption observed for BTO₂, DBTO₂ and 4,6-DMDBTO₂ respectively was 8.5 ± 0.6 mg/g, 7.0 ± 0.5 mg/g and 6.6 ± 0.7 mg/g when imprinted chitosan nanofibers were employed, 4.9 ± 0.5 mg/g, 4.2 ± 0.7 mg/g and 3.9 ± 0.6 mg/g on molecularly imprinted chitosan microspheres, and 28.5 ± 0.4 mg/g, 29.8 ± 2.2 mg/g and 20.1 ± 1.4 mg/g on molecularly imprinted PBI nanofibers. Application of electrospun chitosan nanofibers on oxidized hydro-treated diesel presented a sulfur removal capacity of 84%, leaving 62 ± 3.2 ppm S in the fuel, while imprinted PBI electrospun nanofibers displayed excellent sulfur removal, keeping sulfur in the fuel after the oxidation/adsorption below the determined limit of detection (LOD), which is 2.4 ppm S. The high level of sulfur removal displayed by imprinted PBI nanofibers was ascribed to hydrogen bonding effects, and π-π stacking between aromatic sulfone compounds and the benzimidazole ring which were confirmed by chemical modelling with density functional theory (DFT) as well as the imprinting effect. The home-made pressurized hot water extraction (PHWE) system was applied for extraction/desorption of sulfone compounds adsorbed on the PBI nanofibers at a flow rate of 1 mL/min and at 150°C with an applied pressure of 30 bars. Application of molecularly imprinted PBI nanofibers for the desulfurization of oxidized hydro-treated fuel showed potential for use in refining industries to reach ultra-low sulfur fuel level, which falls below the 10 ppm sulfur limit which is mandated by the environmental protection agency (EPA) from 2015.
30

Synthetic aspects of organosulphur chemistry

Brown, M. D. January 1984 (has links)
The thesis is concerned with approaches to substituted 2-phenyl- 1,3-oxathiolans and their cycloreversion to olefins. 2-(α-Methoxybenzylthio)acetophenone (l) was prepared by <u>in situ</u> alkylation of the thiolate generated by aminolysis of 0-ethyl-S-phenacyldithiocarbonate with α-chlorobenzyl methyl ether. Reduction of (l) with lithium aluminium hydride gave 2-(α-methoxybenzylthio)—1— phenylethanol which cyclised in the presence of <u>p</u>-toluenesulphonic acid to give 2,5-diphenyl-l,3-oxathiolan. α-(α'-Methoxybenzylthio)acetone (2), was prepared by a similar route to that used for (l). Compounds (1) and (2) and various other a-thiosubstituted ketones were investigated as potential starting materials for the synthesis of substituted β—(α-methoxybenzylthio)alcohols but the transformations attempted were unsuccessful. A reasonably flexible synthesis of substituted oxathiolans and hence the corresponding olefins was developed starting from α—(benzylthio)ketones. The olefins prepared were 2-methyl—3—phenyl—2— butene, 1,2-dimethylcyclohexene and the Z-(3) and E-(4) 3,4—dimethylhex— 3—enes. Alkylation of the a-(benzylthio)ketones proceeded regio— specifically α- to the thio and keto groups. Subsequent reaction with organometallic reagents gave β-benzylthioalcohols. Generally alkyllithiums gave the best yields and higher stereoselectivities in these additions. The benzylthio group was cleaved with sodium/ ammonia to give β-mercaptoalcohols which were condensed with benzaldehyde to give 2-phenyl-l,3-oxathiolans. Treatment of the oxathiolans with lithium diisopropylamide resulted in cycloreversion to olefins in high yields (75-100%). Stereochemical integrity was maintained throughout the reactions used to convert the β-benzylthioalcohols into olefins and consequently the stereoselectivity was determined at the β-benzylthioalcohol forming step. Thus the ratio found for (3) to (4) synthesised from a 3-benzylthioalcohol prepared by reaction of methyllithium with 3-benzylthio-3- methyl-4—hexanone was 3:7, whereas when the β-benzylthioalcohol was prepared from 3-benzylthio-3-methyl-2-pentanone by an ethyllithium reaction the ratio of (3) to (4) subsequently obtained was 6:4.

Page generated in 0.0553 seconds