• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deprotonation as a Unified Pathway for Organothiol Binding to Citrate- and Borohydride Reduced Gold Nanoparticles

Ulpanhewa Vidanalage, Sandamini Heshani Alahakoon 06 May 2017 (has links)
The mechanism of organothiol (OT) binding to gold has remained controversial for decades. There are three mechanisms proposed for OT binding to gold surfaces. The first is the radical pathway in which the sulfur-bound hydrogen atoms (RS-H) are released as hydrogen atoms which eventually converted into hydrogen gas. Second is the deprotonation pathway in which the sulfur-bound hydrogen atoms leave as protons. Third is direct adsorption in which the RS-H bonds remain intact on the gold surface. This study demonstrates a combined pH and surface enhanced Raman spectroscopic study of organothiol binding to citrate- and borohydride-reduced gold nanoparticles (AuNPs) in polar (water), moderately polar (dichloromethane), and nonpolar (toluene,hexane) solvents. Thiol deprotonation provides a unified pathway for OT binding to AuNPs regardless of solvent polarity of the ligand binding solutions. This work should contribute to resolve the long-standing debate on the fate of the sulfur-bound hydrogen of organothiols self-assembled on gold.
2

Electrolyte Interactions with Colloidal Gold Nanoparticles in Water

Perera, HA Ganganath Sanjeewa 11 August 2017 (has links)
Electrolyte interactions with colloidal nanoparticles (NPs) in aqueous solutions have been implicated in a wide range of research and applications. Existing studies on electrolyte interactions with NPs are primarily based on the electrical double layer (EDL) theory. However, the EDL model provides very limited information on how electrolytes directly bind to NPs, electrolyte impact on charge distribution on NPs, and NP morphological modification upon electrolyte binding. Furthermore, the previous reports have mainly focused on either cations or anions binding onto NPs, while the potential cation and anion coadsorption onto NPs and NPacilitated cation-anion interactions remain largely uncharted. Filling these knowledge gaps are critical to enhance the fundamental understanding of interfacial interactions of electrolytes with NPs. Experimental characterization of cations and anions at the solid/liquid interface is a challenging analytical task. In the first study, we demonstrated the first direct experimental evidence of ion pairing on gold nanoparticles (AuNPs) in water by using surface enhanced Raman spectroscopy (SERS) in combination with electrolyte washing. Unlike ion pairing in aqueous solutions where the oppositely charged ions are either in direct contact or separated by a solvation shell, the ion pairing on AuNPs refers to cation and anion coadsorption onto the same NP surface regardless of separation distance. Ion pairing reduces the electrolyte threshold concentration in inducing AuNP aggregation and enhances the competitiveness of electrolyte over neutral molecules in binding to AuNPs. In the second study, we demonstrated that binding, structure, and properties of an ionic species on AuNPs are significantly dependent on the counterion adsorbed on AuNPs. These counterion effects include electrolyte-induced AuNP aggregation and fusion, quantitative cation and anion coadsorption on AuNPs, and SERS spectral distortion induced by the ionic species on AuNP surfaces. In the final study, we proposed that ion pairing as the main mechanism for reducing electrostatic repulsion among organothiolates self-assembled on AuNPs in water by using a series of experimental and computational studies. The work described in this dissertation provides a series of new insights into electrolyte interfacial interactions with AuNPs.
3

Interactions of Organothiols with Gold Nanoparticles in Water

Mohamed Ansar, Mohamed Siyam 15 August 2014 (has links)
Self-assembly of organothiols (OTs) and thiolated biomolecules onto gold nanoparticle (AuNP) surfaces remains one of the most intense areas of nanoscience research and understanding molecular interfacial phenomena is crucial. Investigation of OT adsorption onto AuNPs, including OT structure and orientation on nanoparticle surfaces, is of fundamental importance in understanding the structure and function relationship of functionalized nanoparticles. Despite the great importance of the interfacial interaction of AuNPs, the exact mechanism of OT interactions with AuNPs has remained unclear and quantitative investigation of OT adsorption has been very limited. The research reported here focused on developing a fundamental and quantitative understanding of OT interactions with AuNPs in water. In studies of OT interactions with AuNPs in water, we found that the OTs form an adsorbed monolayer on AuNPs by releasing the sulfur-bound hydrogen as a proton and acidifying the ligand binding solution. The pH measurements suggest that there is a substantial fraction (up to 45%) of the protons derived from the surface adsorbed OTs retained close to the gold surface, presumably as the counter-ion to the negatively- charged, thiolate-covered AuNPs. Charge-transfer between the surfacesorbed thiolate and the AuNPs is demonstrated by the quenching of the OT UV-vis absorption when the OTs are adsorbed onto the AuNPs. Using a combination of surface enhanced Raman spectroscopy (SERS), density function calculations, and normal Raman spectroscopy, the pH dependence of mercaptobenzimadazole (MBI) adsorption onto AuNPs was systematically studied. By using the ratiometric SERS ligand quantification technique, MBI adsorption isotherms were constructed at three different pHs (1.4, 7.9, and 12.5). The Langmuir isotherms indicate that MBI thione has a higher saturation packing density (~­631 pmol/cm2) than MBI thiolate (~­568 pmol/cm2), but its binding constant (2.14 x 106 M-1) is about five times smaller than the latter (10.12 x 106 M-1). The work described in this dissertation provides a series of new insights into AuNP-OT interaction, and structure and properties of OTs on AuNPs.

Page generated in 0.0514 seconds