• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design and Testing of a Foundation Raised Oscillating Surge Wave Energy Converter

Davis, Jacob R 20 October 2021 (has links) (PDF)
Our oceans contain tremendous resource potential in the form of mechanical energy. With the ability to capture and convert the energy carried in surface waves into usable electricity, wave energy converters (WECs) have been a long-held aspiration in ocean renewable energy. One of the most popular wave energy design concepts is the Oscillating Surge Wave Energy Converter (OSWEC). True to their namesake, OSWECs extract energy from the surge force induced by incident waves. In their most basic form, OSWECs are analogous to a bottom-hinged paddle which pitches fore and aft in the direction of wave motion. Most commonly, OSWECs are designed for nearshore use in water depths of less than 20 m where they are mounted to the seafloor at their point of rotation. This work seeks to explore the response and design loads of foundation raised OSWECs for use in deeper waters, unlocking new and greater areas of wave energy resource. A foundation raised OSWEC was designed, built, and tested in a laboratory wave tank. The scale OSWEC was modeled using two methods and compared to data from the experiments. The first of these methods is a highly efficient, analytical approach which derives from the solution to the boundary value problem transformed into elliptical coordinates. Previous validation results demonstrate the analytical model is capable of reproducing results from higher fidelity numerical simulations with computation times on the order of seconds. The second approach combines hydrodynamic coefficients evaluated in WAMIT with the open-source time domain solver WEC-Sim. Two model configurations were observed: the scale OSWEC with no external attachments, and the OSWEC with external torsion springs, as to excite the model at its natural period. The pitch displacement, surge and heave forces, and pitch moment were recorded at the base of the model foundation in response to regular waves with periods ranging from 0.8 s to 2.8 s and heights from 1.5 mm to 14.3 mm. The experimental results show the surge force and pitch moment increase drastically across the observed period range from the addition of external springs. The increase is 20–30 times greater in the most extreme cases. Little to no change in heave forcing was observed between the configurations. The analytical and numerical models capture the natural period of the two configurations well, but the pitch displacement responses of both models fall short of the observations by as much as 60-80% at some periods. Excellent agreement in surge, heave, and pitch loading was obtained between the experimental data and both models. The models were used to simulate a simple power takeoff (PTO) system to approximate the additional PTO torque on the OSWEC. This torque was found to be substantial in magnitude relative to the pitch foundation moment over much of the observed period range.
2

Numerical Analysis and Parameter Optimization of Portable Oscillating-Body Wave Energy Converters

Capper, Joseph David 14 June 2021 (has links)
As a clean, abundant, and renewable source of energy with a strategic location in close proximity to global population regions, ocean wave energy shows major promise. Although much wave energy converter development has focused on large-scale power generation, there is also increasing interest in small-scale applications for powering the blue economy. In this thesis, the objective was to optimize the performance of small-sized, portable, oscillating-body wave energy converters (WECs). Two types of oscillating body WECs were studied: bottom hinged and two-body attenuator. For the bottom-hinged device, the goal was to show the feasibility of an oscillating surge WEC and desalination system using numerical modeling to estimate the system performance. For a 5-day test period, the model estimated 517 L of freshwater production with 711 ppm concentration and showed effective brine discharge, agreeing well with preliminary experimental results. The objective for the two-body attenuator was to develop a method of power maximization through resonance tuning and numerical simulation. Three different geometries of body cross sections were used for the study with four different drag coefficients for each geometry. Power generation was maximized by adjusting body dimensions to match the natural frequency with the wave frequency. Based on the time domain simulation results, there was not a significant difference in power between the geometries when variation in drag was not considered, but the elliptical geometry had the highest power when using approximate drag coefficients. Using the two degree-of-freedom (2DOF) model with approximate drag coefficients, the elliptical cross section had a max power of 27.1 W and 7.36% capture width ratio (CWR) for regular waves and a max power of 8.32 W and 2.26% CWR for irregular waves. Using the three degree-of-freedom (3DOF) model with approximate drag coefficients, the elliptical cross section had a max power of 22.5 W and 6.12% CWR for regular waves and 6.18 W and 1.68% CWR for irregular waves. A mooring stiffness study was performed with the 3DOF model, showing that mooring stiffness can be increased to increase relative motion and therefore increase power. / Master of Science / As a clean, abundant, and renewable source of energy with a strategic location in close proximity to global population centers, ocean wave energy shows major promise. Although much wave energy converter development has focused on large-scale power generation, there is also increasing interest in small-scale applications for powering the blue economy. There are many situations where large-scale wave energy converter (WEC) devices are not necessary or practical, but easily-portable, small-sized WECs are suitable, including navigation signs, illumination, sensors, survival kits, electronics charging, and portable desalination. In this thesis, the objective was to optimize the performance of small-sized, oscillating body wave energy converters. Oscillating body WECs function by converting a device's wave-driven oscillating motion into useful power. Two types of oscillating body WECs were studied: bottom hinged and two-body attenuator. For the bottom-hinged device, the goal was to show the feasibility of a WEC and desalination system using numerical modeling to estimate the system performance. Based on the model results, the system will produce desirable amounts of fresh water with suitably low concentration and be effective at discharging brine. The objective for the two-body attenuator was to develop a method of power maximization through resonance tuning and numerical simulation. Based on the two- and three-degree-of-freedom model results with approximate drag coefficients, the elliptical cross section had the largest power absorption out of three different geometries of body cross sections. A mooring stiffness study with the three-degree-of-freedom model showed that mooring stiffness can be increased to increase power absorption.

Page generated in 0.1646 seconds