• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optogenetic regulation of osmolarity and water flux / Optogenetische Regulation der Osmolarität und des Wasserflusses

Fei, Lin January 2023 (has links) (PDF)
Optogenetics is a powerful technique that utilizes light to precisely regulate physiological activities of neurons and other cell types. Specifically, light-sensitive ion channels, pumps or enzymes are expressed in cells to enable their regulation by illumination, thus allowing for precise control of biochemical signaling pathways. The first part of my study involved the construction, optimization, and characterization of two optogenetic tools, KCR1 and NCR1. Elena Govorunova et al. discovered a lightgated potassium channel, KCR1, in the protozoan Hyphochytrium catenoides. Traditional potassium ion channels are classified as either ligand-gated or voltage-gated and possess conserved pore-forming domains and K+ -selective filters. However, KCR1 is unique in that it does not contain the signature sequence of previously known K+ channels and is a channelrhodopsin. We synthesized the KCR1 plasmid according to the published sequence and expressed it in Xenopus oocytes. Due to the original KCR1 current being too small, I optimized it into KCR1 2.0 to improve its performance by fusing LR (signal peptide LucyRho, enhances expression) at the N-terminal and T (trafficking signal peptide) and E (ER export signal peptide) at the C-terminal. Additionally, I investigated the light sensitivity, action spectrum, and kinetics of KCR1 2.0 in Xenopus oocytes. The potassium permeability of KCR1 2.0, PK/Pna  24, makes KCR1 2.0 a powerful hyperpolarizing tool that can be used to inhibit neuronal firing in animals. Inspired by KCR1, we used the KCR1 sequence as a template for gene sequence alignment with the sequences in H. catenoides. We found that NCR1 and KCR1 have similar gene sequences. NCR1 was characterized by us as a light-gated sodium channel. This NCR1 was also characterized and published by Govorunova et al. very recently, with the name HcCCR. Due to the original NCR1 current being too small, I optimized it into NCR1 2.0 to improve its performance by fusing LR at the N-terminal and T and E at the C-terminal, which significantly improved the expression level and greatly increased the current amplitude of NCR1. Full-length NCR1 2.0 contains 432 amino acids. To test whether the number of amino acids changes the characteristics of NCR1 2.0, we designed NCR1 2.0 (330), NCR1 2.0 (283), and NCR1 2.0 (273) by retaining the number of amino acids at 330, 280, and 273 in NCR1 2.0, respectively. As the number of amino acids decreased, the current in NCR1 2.0 increased. I also investigated the light sensitivity, action spectrum, and kinetics of NCR1 2.0 (273) in the Xenopus Abstract 2 oocytes. We performed four point mutations at amino acid positions 133 and 116 of NCR1 2.0 and analyzed the reversal potentials of the mutants. The mutations were as follows: NCR1 2.0 (273 D116H), NCR1 2.0 (273 D116E), NCR1 2.0 (283 V133H), and NCR1 2.0 (283 D116Q). The second part of this study focuses on light-induced water transport using optogenetic tools. We explored the use of optogenetic tools to regulate water flow by changing the osmolarity in oocytes. Water flux through AQP1 is driven by the osmotic gradient that results from concentration differences of small molecules or ions. Therefore, we seek to regulate ion concentrations, using optogenetic tools to regulate the flux of water noninvasively. To achieve this, I applied the light-gated cation channels XXM 2.0 and NCR1 2.0 to regulate the concentration of Na+ , while K + channel KCR1 2.0 was used to regulate K + concentration. As Na+ flows into the Xenopus oocytes, the membrane potential of the oocytes becomes positive, and Clcan influx through the light-gated anion channel GtACR1. By combining these optogenetic tools to regulate NaCl or KCl concentrations, I can change the osmolarity inside the oocytes, thus regulating the flux of water. I co-expressed AQP1 with optogenetic tools in the oocytes to accelerate water flux. Overall, I designed three combinations (1: AQP1, XXM 2.0 and GtACR1. 2: AQP1, NCR1 2.0 and GtACR1. 3: AQP1, KCR1 2.0 and GtACR1) to regulate the flow of water in oocytes. The shrinking or swelling of the oocytes can only be achieved when AQP1, light-gated cation channels (XXM 2.0/NCR1 2.0/KCR1 2.0), and light-gated anion channels (GtACR1) are expressed together. The illumination after expression of either or both alone does not result in changes in oocyte morphology. In sum, I demonstrated a novel strategy to manipulate water movement into and out of Xenopus oocytes, non-invasively through illumination. These findings provide a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms. / Die Optogenetik ist eine leistungsstarke Technik, die Licht zur präzisen Regulierung der physiologischen Aktivitäten von Neuronen und anderen Zelltypen einsetzt. Konkret werden Licht-empfindliche Ionenkanäle, Pumpen oder Enzyme in Zellen exprimiert, um ihre Regulierung durch Belichtung zu ermöglichen und so eine präzise Kontrolle biochemischer Signalwege zu ermöglichen. Der erste Teil meiner Studie umfasste die Konstruktion, Optimierung und Charakterisierung von zwei optogenetischen Werkzeugen, KCR1 und NCR1. Elena Govorunova und Mitarbeiter entdeckten einen lichtgesteuerten Kaliumkanal, KCR1, in dem Protozoen Hyphochytrium catenoides. Herkömmliche Kalium-Ionenkanäle werden entweder als ligandengesteuert oder spannungsgesteuert klassifiziert und verfügen über konservierte porenbildende Domänen und K+-selektive Filter. KCR1 ist jedoch insofern einzigartig, als er nicht die Signatursequenz der bisher bekannten K+-Kanäle enthält und ein Kanalrhodopsin ist. Wir synthetisierten das KCR1-Plasmid entsprechend der veröffentlichten Sequenz und exprimierten es in Xenopus-Oozyten. Da der ursprüngliche KCR1-Strom zu klein war, optimierte ich ihn zu KCR1 2.0, um seine Leistung zu verbessern, indem LR (Signalpeptid LucyRho, verbessert die Expression) am N-Terminus und T (Trafficking-Signalpeptid) und E (ER-Export-Signalpeptid) am C-Terminus fusioniert wurden. Außerdem untersuchte ich die Lichtempfindlichkeit, das Wirkungs-Spektrum und die Kinetik von KCR1 2.0 in Xenopus-Oozyten. Die Kaliumpermeabilität von KCR1 2.0, PK/PNa  24, macht KCR1 2.0 zu einem leistungsfähigen hyperpolarisierenden Werkzeug, das zur Hemmung von Nervenzellen in Tieren eingesetzt werden kann. Inspiriert von KCR1 verwendeten wir die KCR1-Sequenz als Vorlage für den Gen-Sequenzabgleich mit Sequenzen in H. catenoides. Wir fanden heraus, dass NCR1 und KCR1 ähnliche Gensequenzen haben. NCR1 wurde von uns als lichtgesteuerter Natriumkanal charakterisiert. NCR1 wurde ebenfalls von Govorunova et al. charakterisiert und vor kurzem unter dem Namen HcCCR veröffentlicht. Da der ursprüngliche NCR1-Strom zu gering war, optimierte ich ihn zu NCR1 2.0, um seine Leistung zu verbessern, indem ich LR am N-Terminus und T und E am C-Terminus fusionierte, was das Expressionsniveau erheblich verbesserte und die Stromamplitude von NCR1 stark erhöhte. NCR1 2.0 in voller Länge enthält 432 Aminosäuren. Um zu testen, ob die Anzahl der Aminosäuren die Eigenschaften von NCR1 2.0 verändert, haben wir NCR1 2.0 (330), NCR1 2.0 (283) und NCR1 2.0 (273) entwickelt, indem wir die Anzahl der Aminosäuren auf 330, 280 bzw. 273 in NCR1 2.0 verkürzt haben. Mit abnehmender Anzahl der Aminosäuren nahm der Strom in NCR1 2.0 zu. Ich untersuchte auch die Licht-Empfindlichkeit, das Wirkungsspektrum und die Kinetik von NCR1 2.0 (273) in Xenopus-Oozyten. Wir führten vier Punktmutationen an den Aminosäurepositionen 133 und 116 von NCR1 2.0 durch und analysierten die Umkehrpotentiale der Mutanten. Die Mutationen waren wie folgt: NCR1 2.0 (273 D116H), NCR1 2.0 (273 D116E), NCR1 2.0 (283 V133H), und NCR1 2.0 (283 D116Q). Der zweite Teil dieser Studie konzentriert sich auf den lichtinduzierten Wassertransport mit Hilfe optogenetischer Methoden. Wir untersuchten den Einsatz optogenetischer Werkzeuge zur Regulierung des Wasserflusses durch Veränderung der Osmolarität in Oozyten. Der Wasserfluss durch AQP1 wird durch den osmotischen Gradienten angetrieben, der durch Konzentrationsunterschiede kleiner Moleküle oder Ionen entsteht. Daher versuchen wir, die Ionenkonzentration mit optogenetischen Mitteln zu regulieren, um den Wasserfluss nicht-invasiv zu steuern. Zu diesem Zweck verwendete ich die lichtgesteuerten Kationenkanäle XXM 2.0 und NCR1 2.0 zur Regulierung der Na+-Konzentration, während der K+-Kanal KCR1 2.0 zur Regulierung der K+-Konzentration eingesetzt wurde. Wenn Na+ in die Xenopus-Oozyten fließt, wird das Membranpotential der Oozyten positiv, und Cl- kann durch den lichtgesteuerten Anionenkanal GtACR1 einströmen. Durch die Kombination dieser optogenetischen Werkzeuge zur Regulierung der NaCl- oder KCl-Konzentration kann ich die Osmolarität innerhalb der Oozyten verändern und so den Wasserfluss regulieren. Ich habe AQP1 zusammen mit optogenetischen Werkzeugen in den Oozyten exprimiert, um den Wasserfluss zu beschleunigen. Insgesamt habe ich drei Kombinationen entwickelt (1: AQP1, XXM 2.0 und GtACR1. 2: AQP1, NCR1 2.0 und GtACR1. 3: AQP1, KCR1 2.0 und GtACR1) zur Regulierung des Wasserflusses in den Eizellen. Das Schrumpfen oder Anschwellen der Oozyten kann nur erreicht werden, wenn AQP1, lichtgesteuerte Kationenkanäle (XXM 2.0/NCR1 2.0/KCR1 2.0) und lichtgesteuerte Anionenkanäle (GtACR1) gemeinsam exprimiert werden. Die Belichtung nach Expression von einem oder beiden allein führt nicht zu Veränderungen der Morphologie der Oozyten. Zusammenfassend lässt sich sagen, dass ich eine neuartige Strategie zur nicht-invasiven Beeinflussung der Wasserbewegung in und aus Xenopus-Oozyten durch Licht demonstriert habe. Diese Ergebnisse eröffnen einen neuen Weg zur Beeinflussung der Wasserhomöostase als Mittel zur Untersuchung verwandter biologischer Phänomene in verschiedenen Zelltypen und Organismen.
2

Bedeutung der Lipopolysaccharidstrukturen bei pathogenen Vibrio cholerae Stämmen für die Ausbildung von Cholera und Abgrenzung zu Umweltisolaten / Importance of LPS structures of virulent Vibrio cholerae strains in correlation with cholera disease and discrimination from environmental strains

Schild, Stefan January 2005 (has links) (PDF)
Obwohl inzwischen über 200 verschiedene Serogruppen von V. cholerae bekannt sind, wurden Ausbrüche der Cholera hauptsächlich von Stämmen der unbekapselten Serogruppe O1 und der bekapselten Serogruppe O139 verursacht. Die Komponenten des Lipopolysaccharids (LPS) von O1 und O139, sowie die Kapsel von O139 tragen zur Kolonisierung im Gastrointestinaltrakt bei. Um die Funktion des LPS und der Kapsel als Virulenzfaktor näher zu untersuchen, wurden Adhäsionsstudien mit definierten LPS- und/ oder Kapsel-Mutanten beider pathogener Serogruppen durchgeführt. Dazu wurde die Mukus-produzierende humane Darmzelllinie HT-29-Rev MTX verwendet. Im Vergleich zum jeweiligen Wildtyp (Wt) konnte für eine O Antigen-Mutante von O1 eine Reduktion um 85%, für eine O Antigen/ Kapsel-Mutante von O139 eine Reduktion um 70% in der Adhäsionsrate festgestellt werden. Ein Beitrag von ToxR regulierten Genprodukten ist ebenfalls möglich. Weiterhin wurden mit WavJ und WavD zwei Genprodukte der Kernoligosaccharid -Biosynthese charakterisiert, welche bislang nur in dem wa*-Genclustertyp 1 der klinischen Isolate nachgewiesen worden sind. Es konnte gezeigt werden, dass beide Genprodukte an der Biosynthese des Kern OS beteiligt sind, wobei WavJ mit hoher Wahrscheinlichkeit die Heptosyl-IV-Transferase darstellt. Die wavDJ-Doppelmutanten beider Serogruppen wiesen eine erhöhte Sensitivität gegenüber Novobiocin auf. Dagegen konnte eine Attenuation der Mutanten im Mausmodell nur für die Serogruppe O139 demonstriert werden. Ein Schlüsselenzym der LPS-Biosynthese stellt die Oberflächenpolymer:Lipid A-Kern OS-Ligase (WaaL), kurz O Antigen-Ligase genannt, dar. In dieser Arbeit wurden die in der Primärstruktur stark unterschiedlichen Ligasen aus einem pathogenen (P27459) und apathogenen (V194) V. cholerae Isolat strukturell und funktionell analysiert. Es wurde gezeigt, dass die Aktivität beider Ligasen von der Anwesenheit eines N-Acetylglucosamins (GlcNAc) im Kernoligosaccharid abhängig ist. Dieser Zucker wird durch das Genprodukt WavL transferiert, welchem in dieser Arbeit die Aktivität einer N-Acetylglucosaminyltransferase zugeordnet werden konnte. Das Gen wavL wurde in allen zur Verfügung stehenden V. cholerae Isolaten nachgewiesen und stellt wahrscheinlich eine generelle Voraussetzung des Kern OS für eine O Antigen-Anheftung dar. Im Gegensatz dazu, diskriminiert die An- bzw. Abwesenheit einer Galaktose (Gal) im Kern OS die Spezifität der Ligasen von V. cholerae P27459 bzw. V194. Dabei ist die Aktivität der Galaktosyltransferase WavM, essentiell für die Aktivität der Gal-abhängigen Ligase von V194. Die Gal-unabhängige Ligase von P27459 wird hingegen durch die Anwesenheit von Gal im Kern OS inhibiert. Hybridfusionen der beiden Ligasen deuten an, dass die Erkennungsdomäne für Gal in der C-terminalen Hälfte lokalisiert ist. Erstmals wurde die Topologie einer Ligase durch PhoA- und LacZ-Fusionen analysiert. Die Suche nach konservierten Aminosäuren (AS) in verschiedenen Ligasen führte zur Identifizierung der Motive R(X3)L und H(X10)G in zwei periplasmatischen Schleife. Ein Austausch des R oder des H in diesen Motiven führte zum Verlust der Ligase-Aktiviät von WaaL aus V. cholerae und S. enterica. Damit geben diese Motive einen ersten Hinweis auf das aktive Zentrum des Enzyms. Desweiteren wurde nach möglichen O Antigen-Transportern bei V. cholerae gesucht, welche bislang noch nicht identifiziert worden waren. Über die Anpassungen von V. cholerae an aquatische Ökosysteme, insbesondere hinsichtlich der wechselnden Osmolarität, ist nahezu nichts bekannt. Durch ein in dieser Arbeit konstruiertes und etabliertes Transposonsystem konnten 3600 Mutanten erzeugt und auf Wachstumsdefekte unter hypertonischen Bedingungen untersucht werden. Eine dieser osmosensitiven Mutanten wies eine Insertion in dem Locus VCA0565 auf, welcher für eine putative Sensor-Histidinkinase kodiert. Mit dem Regulator, kodiert durch VCA0566, stellt VCA0565 das putative Zwei-Komponentensystem OsmRK dar. Transkriptomanalysen von osmR/ K-Mutanten lieferten keine Erklärung des Wachstumsdefekts unter hypertonischen Bedingungen, zeigten aber eine Vernetzung der durch OsmR/ K regulierten Gene mit dem ToxR-Regulon auf. Analysen der Außenmembran demonstrierten, dass eine Mutation von osmR/ K zu einer Repression von OmpU unter hohen Salzkonzentrationen führt. Vergleichende Experimente mit weiteren Mutanten deuteten an, dass es in osmR/ K- und toxS-Mutanten unter erhöhten Salzkonzentrationen zur Degradation von ToxR kommt. Während die Deregulation von OmpU in osmR/ K-Mutanten nur unter Salzstress zu beobachten war, führte in der toxS-Mutante auch ein Membranstress durch Zugabe von Protamin zu einer Repression von OmpU. Die zu OsmR/ K nah verwandten putativen Zwei-Komponentensysteme EnvZ/ OmpR und VCA0257/ VCA0256 hatten unter keiner der getesteten Bedingungen einen Einfluss auf die Proteine der AM. Weiterhin wurde eine C-terminale Degradation von HutA unter hypertonischen Bedingungen aufgedeckt. / Although, more than 200 serogroups of V. cholerae.were identified, however, only the strains of the non-encapsulated O1 and the encapsulated O139 serogroups were found to be responsible for cholera epidemics. The components of the LPS of O1 and O139 play a crucial role in the colonization of the gastrointestinal tract. To analyze the contribution of the LPS and the capsule in the adhesion to epithelial cells, mucus layer attachment studies using defined O antigen and/ or capsule mutants of both serogroups and the human intestinal cell line HT29-Rev MTX were performed. In case of the O antigen mutant of O1 a 85% and for the O antigen and capsule mutant of O139 a 70% reduction in the adhesion rate was determined compared to wild type. It is likely that ToxR regulated gene products also contribute to the adhesion, since a toxR-mutant of O1 showed a 3-fold reduction in the adhesion rate. In addition the two gene products of the core oligosaccharide biosynthesis, WavJ and WavD, were characterized. So far the corresponding genes could only be found in the wa*-gene cluster type 1 of clinical isolates. It could be demonstrated, that single and double knockout mutants have an effect on core oligosaccharide biosynthesis in both serogroups. Based on bioinformatical data it is likely that WavJ represents the heptosyl-IV-transferase. Double mutants in wavJ and wavD of both serogroups showed an attenuated growth in the presence of novobiocin, whereas only the mutants in O139 demonstrated reduced colonization in the in vivo mouse model. The surface polymer:lipid A-core ligase (WaaL), also called the O antigen ligase, is a key enzyme in the LPS biosynthesis of Gram- bacteria. Part of this work focused on the structural and functional characteristics associated with the recognition of the core oligosaccharide of two distantly related ligases of a virulent (P27459) and an environmental (V194) V. cholerae isolate. It was demonstrated that the activity of both ligases is dependent on the presence of N-acetylglucosamine, which is attached to the core oligosaccharide by the WavL glycosyltransferase. The gene wavL could be found in all V. cholerae isolates so far. In contrast, an additional sugar substitution, i.e. galactose, which is transfered by the WavM galactosyltransferase, discriminates the core oligosaccharide specificity of the ligases of P27459 and V194. The activity of WavM is essential for the activity of the galactose-dependent ligase of V194, whereas it hinders the galactose-independent ligase of P27459 to transfer the O antigen onto the core oligosaccharide. WaaL protein hybrids between galactose dependent and non-dependent ligases indicate that the galactose recognition site is located in the C-terminal half. Using PhoA and LacZ fusions the topology of the ligase of P27459 was determined. Amino acid sequence alignments of WaaL proteins identified the distinct conserved motifs R(X3)L and H(X10)G in two periplasmic loops. By site directed mutagenesis of the histidine and arginine residues within these motifs, an abortism of O antigen transfer reaction for WaaLs of V. cholerae and Salmonella enterica was found. Furthermore the putative O antigen-transport systems of V. cholerae were investigated. In this work a new transposon system was constructed and established, resulting in 3600 mutants, which were screened for growth defects under hypertonic conditions. One of these mutants had an insertion in locus VCA0565, which encodes a putative sensor histidine kinase. In combination with the transcriptional regulator, encoded by VCA0566, they represent the putative two-component system OsmRK. Comparing the transcriptom of osmR/ K-mutants to the wild type revealed no explanation for the osmosensitive phenotype, but showed some interaction between the regulon of OsmR/ K and ToxR. Analysis of the outer membrane demonstrated, that a mutation in osmR/ K results in a repression of OmpU under hypertonic conditions. Comparative experiments, including additional mutants indicated a degradation of ToxR in osmR/ K- and toxS-mutants in presence of high salt concentrations. In contrast to osmR/ K-mutants, in the toxS-mutant the repression of OmpU could be also observed by a different membrane stress caused by protamine. In addition, the analysis of the outer membrane proteins revealed a C-terminal degradation of HutA under hypertonic stress conditions.
3

Untersuchung zur Regulation der Expression des zuckerkonditionierten Verhaltens bei Drosophila melanogaster / Analysing the regulation of the expression of sugar-conditioned behaviour in Drosophila melanogaster

Gruber, Franz Andreas January 2010 (has links) (PDF)
In dieser Doktorarbeit habe ich die Regulation der Expression des zuckerbelohnten Verhaltens durch den Fütterungszustand bei Drosophila melanogaster untersucht. Die Fliegen können während einer Trainingsphase mit Hilfe einer Zuckerbelohnung auf einen bestimmten Duft konditioniert werden. Nach dem Training können die Fliegen dann auf das olfaktorische Gedächtnis getestet werden. Die Bereitschaft das zuckerkonditionierte Gedächtnis im Test zu zeigen wird vom Fütterungszustand kontrolliert, wie ich in Übereinstimmung mit den Ergebnissen früherer Arbeiten demonstrierte (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008). Nur nicht gefütterte Fliegen exprimieren das Gedächtnis, während Fütterungen bis kurz vor dem Test eine reversibel supprimierende Wirkung haben. Einen ähnlichen regulatorischen Einfluss übt der Futterentzug auch auf die Expression anderer futterbezogener Verhaltensweisen, wie z.B. die naive Zuckerpräferenz, aus. Nachdem ich den drastischen Einfluss des Fütterungszustands auf die Ausprägung des zuckerkonditionierten Verhaltens gezeigt bzw. bestätigt hatte, habe ich nach verhaltensregulierenden Faktoren gesucht, die bei einer Fütterung die Gedächtnisexpression unterdrücken. Als mögliche Kandidaten untersuchte ich Parameter, die zum Teil bereits bei verschiedenen futterbezogenen Verhaltensweisen unterschiedlicher Tierarten als „Sättigungssignale“ identifiziert worden waren (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). Dabei stellte sich heraus, dass weder die „ernährende“ Eigenschaft des Futters, noch ein durch Futteraufnahme bedingter Anstieg der internen Glukosekonzentration für die Suppression des zuckerkonditionierten Gedächtnisses notwendig sind. Die Unterdrückung der Gedächtnisexpression kann auch nicht durch Unterschiede in den aufgenommenen Futtermengen, die als verhaltensinhibitorische Dehnungssignale des Verdauungstrakts wirken könnten, oder mit der Stärke des süßen Geschmacks erklärt werden. Die Suppression des zuckerbelohnten Verhaltens folgte den Konzentrationen der gefütterten Substanzen und war unabhängig von deren chemischen Spezifität. Deshalb wird die Osmolarität des aufgenommenen Futters als ein entscheidender Faktor für die Unterdrückung der zuckerkonditionierten Gedächtnisexpression angenommen. Weil nur inkorporierte Substanzen einen Unterdrückungseffekt hatten, wird ein osmolaritätsdetektierender Mechanismus im Körper 67 postuliert, wahrscheinlich im Verdauungstrakt und/oder der Hämolymphe. Die Hämolymphosmolarität ist als „Sättigungssignal“ bei einigen wirbellosen Tieren bereits nachgewiesen worden (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Deshalb habe ich mit Hilfe genetischer Methoden und ohne die Fliegen zu füttern, versucht über einen künstlich induzierten Anstieg der Trehaloseund Lipidkonzentrationen die Osmolarität der Hämolymphe in Drosophila zu erhöhen. Eine solche konzentrationserhöhende Wirkung für Lipide und die Trehalose, dem Hauptblutzucker der Insekten, ist bereits für das adipokinetische Hormon (AKH), das von Zellen der Corpora cardiaca exprimiert wird, nachgewiesen worden (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). Es stellte sich heraus, dass die künstliche Stimulierung AKH-produzierender Neurone das zuckerkonditionierten Verhalten temporär, reversible und selektiv unterdrückt. Gleiche Behandlungen hatten keinen Effekt auf ein aversiv konditioniertes olfaktorisches Gedächtnis oder ein naives Zuckerpräferenzverhalten. Wie aus dieser Arbeit hervorgeht, stellt wahrscheinlich die Osmolarität des Verdauungstrakts und der Hämolymphe oder nur der Hämolymphe ein physiologisches Korrelat zum Fütterungszustand dar und wirkt als unterdrückendes Signal. Dass Fütterungen das zuckerkonditionierte Verhalten und die Zuckerpräferenz supprimieren, die künstliche Stimulation AKH-produzierender Zellen aber selektiv nur die zuckerbelohnte Gedächtnisexpression unterdrückt, deutet auf mindestens zwei unterschiedliche „Sättigungssignalwege“ hin. Außerdem macht es deutlich wie uneinheitlich futterbezogene Verhaltensweisen, wie das zuckerbelohnte Verhalten und die naive Zuckerpräferenz, reguliert werden. / In this work I investigated the regulation of the expression of the sugar conditioned behavior by feeding states in Drosophila melanogaster. During the training flies are able to associate an odor with a sugar reward. During the test these flies have the opportunity to show their odor memory. In accordance with previous findings (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008), I also showed that the readiness to express sugar conditioned memory is controlled by the feeding state. The memory was only displayed by starved flies, whereas feedings of the flies until the test cause a reversible and temporary suppression of conditioned behavior. Feeding states similarly influence the expression of other food-related behaviors like sugar preference. After I have showed/confirmed the drastic influence of feeding state on sugar conditioned behavior, I tried to search for factors which suppress the memory expression of conditioned flies during feeding. Therefore I verified physiological parameters as promising candidates which have already been identified as “satiation-signals” for different food-related behaviors through the animal kingdom (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). As the results revealed, neither the nutritional value of the available food nor an increase of the internal glucose-concentrations were necessary for suppressing conditioned behavior. Furthermore differences in sweet taste and in the amount of the ingested food, which likely serve as volumetric signals of the digestive system, were not critical determinants for inhibition of the memory expression. Because suppression followed the concentration of the substances independent of the chemical specificity, I conclude that the osmolarity of the ingested food is a critical factor for inhibition of sugar conditioned behavior. Only ingested substances were suppressive. Therefore an internal osmolarity-detecting mechanism is postulated, most probably in the digestive system or the hemolymph. Hemolymph-osmolarity has already been shown as a “satiation-signal” for some invertebrates (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Thus I tried to increase the hemolymph-osmolarity by an artificially induced rise of the concentration of lipids and trehalose, the main blood sugar of insects. A concentration-increasing effect such like this has already been shown for the adipokinetic hormone (AKH), which is expressed in cells of the corpora cardiaca (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). I demonstrated that an artificial stimulation of AKH69 producing neurons induces the suppression of sugar conditioned behavior, but leaves aversive conditioned behavior and naïve sugar preference unchanged. This work indicates that the osmolarity of the digestive system and the hemolymph or only of the hemolymph serves as (a) physiological correlate(s), which signals suppression. Feeding induced inhibition of the expression of sugar conditioned behavior and naïve sugar preference, whereas the artificial stimulation of AKH-producing cells selectively inhibited sugar rewarded memory expression alone. Thus I assume at least two separable “satiation”-pathways. Moreover these results demonstrate the non-uniform regulation of different food-related behaviors like sugar conditioned behavior and naïve sugar preference.
4

Elektrophysiologische Charakterisierung eines Betain/GABA-Transporters / Characterization of a betaine/GABA-transporter

Reese, Marc 09 August 2011 (has links)
No description available.

Page generated in 0.0336 seconds