• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synapsin and Bruchpilot, two synaptic proteins underlying specific phases of olfactory aversive memory in Drosophila melanogaster / Synapsin und Bruchpilot, zwei synaptische Proteine für spezifische Komponenten von aversivem olfaktorischem Gedächtnis bei Drosophila melanogaster

Knapek, Stephan January 2010 (has links) (PDF)
Memory is dynamic: shortly after acquisition it is susceptible to amnesic treatments, gets gradually consolidated, and becomes resistant to retrograde amnesia (McGaugh, 2000). Associative olfactory memory of the fruit fly Drosophila melanogaster also shows these features. After a single associative training where an odor is paired with electric shock (Quinn et al., 1974; Tully and Quinn, 1985), flies form an aversive odor memory that lasts for several hours, consisting of qualitatively different components. These components can be dissociated by mutations, their underlying neuronal circuitry and susceptibility to amnesic treatments (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). A component that is susceptible to an amnesic treatment, i.e. anesthesia-sensitive memory (ASM), dominates early memory, but decays rapidly (Margulies et al., 2005; Quinn and Dudai, 1976). A consolidated anesthesia-resistant memory component (ARM) is built gradually within the following hours and lasts significantly longer (Margulies et al., 2005; Quinn and Dudai, 1976). I showed here that the establishment of ARM requires less intensity of shock reinforcement than ASM. ARM and ASM rely on different molecular and/or neuronal processes: ARM is selectively impaired in the radish mutant, whereas for example the amnesiac and rutabaga genes are specifically required for ASM (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). The latter comprise the cAMP signaling pathway in the fly, with the PKA being its supposed major target (Levin et al., 1992). Here I showed that a synapsin null-mutant encoding the evolutionary conserved phosphoprotein Synapsin is selectively impaired in the labile ASM. Further experiments suggested Synapsin as a potential downstream effector of the cAMP/PKA cascade. Similar to my results, Synapsin plays a role for different learning tasks in vertebrates (Gitler et al., 2004; Silva et al., 1996). Also in Aplysia, PKA-dependent phosphorylation of Synapsin has been proposed to be involved in regulation of neurotransmitter release and short-term plasticity (Angers et al., 2002; Fiumara et al., 2004). Synapsin is associated with a reserve pool of vesicles at the presynapse and is required to maintain vesicle release specifically under sustained high frequency nerve stimulation (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). In contrast, the requirement of Bruchpilot, which is homologous to the mammalian active zone proteins ELKS/CAST (Wagh et al., 2006), is most pronounced in immediate vesicle release (Kittel et al., 2006). Under repeated stimulation of a bruchpilot mutant motor neuron, immediate vesicle release is severely impaired whereas the following steady-state release is still possible (Kittel et al., 2006). In line with that, knockdown of the Bruchpilot protein causes impairment in clustering of Ca2+ channels to the active zones and a lack of electron-dense projections at presynaptic terminals (T-bars). Thus, less synaptic vesicles of the readily-releasable pool are accumulated to the release sites and their release probability is severely impaired (Kittel et al., 2006; Wagh et al., 2006). First, I showed that Bruchpilot is required for aversive olfactory memory and localized the requirement of Bruchpilot to the Kenyon cells of the mushroom body, the second-order olfactory interneurons in Drosophila. Furthermore, I demonstrated that Bruchpilot selectively functions for the consolidated anesthesia-resistant memory. Since Synapsin is specifically required for the labile anesthesia sensitive memory, different synaptic proteins can dissociate consolidated and labile components of olfactory memory and two different modes of neurotransmission (high- vs. low frequency dependent) might differentiate ASM and ARM. / Gedächtnis ist ein dynamischer Prozess. In der Zeit kurz nach seiner Bildung ist es instabil und anfällig gegen amnestische Störungen, dann wird es schrittweise konsolidiert und schließlich resistent gegenüber retrogradem Gedächtnisverlust (McGaugh, 2000). Auch das assoziative olfaktorische Gedächtnis der Fruchtfliege Drosophila melanogaster zeigt diese Merkmale. Nach einem einzelnen assoziativen Training, in welchem ein Duft mit elektrischen Stromstößen gepaart wird, bilden die Fliegen ein aversives Duftgedächtnis, welches über mehrere Stunden anhält und aus qualitativ unterschiedlichen Komponenten besteht (Quinn et al., 1974; Tully and Quinn, 1985). Diese Komponenten können zum Beispiel durch Mutationen, die zugrunde liegenden neuronalen Verknüpfungen oder durch ihre Anfälligkeit für amnestische Behandlungen unterschieden werden (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). Eine gegen amnestische Behandlungen, wie beispielsweise Kälte-induzierte Betäubung, anfällige Komponente beherrscht das frühe Gedächtnis, zerfällt jedoch schnell (Margulies et al., 2005; Quinn and Dudai, 1976). Diese wird deshalb Anästhesie-sensitives Gedächtnis genannt (anesthesia-sensitive memory [ASM]). Im Gegensatz dazu baut sich eine konsolidierte Komponente erst langsam in den folgenden Stunden nach dem Training auf, hält stattdessen jedoch länger an (Margulies et al., 2005; Quinn and Dudai, 1976). Diese Komponente ist resistent gegenüber Kälte-induzierter Anästhesie und wird deshalb als ARM (anesthesia-resistant memory) bezeichnet. In der vorliegenden Arbeit konnte ich zeigen, dass das konsolidierte ARM bereits mit deutlich weniger starken Elektroschocks im Training gebildet wird als das instabile ASM. ARM und ASM unterliegen unterschiedliche molekulare und/oder neuronale Prozesse. Während in einer Mutante für das radish Gen selektiv ARM beeinträchtigt ist, werden andere Gene wie zum Beispiel amnesiac oder rutabaga ausschließlich für ASM benötigt (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). Die beiden letzteren sind Teil des cAMP Signalweges, welcher vermutlich hauptsächlich die cAMP abhängige Protein-Kinase A (PKA) aktiviert (Levin et al., 1992). Hier zeige ich, dass eine Null-Mutante für das evolutionär konservierte Phosphoprotein Synapsin einen selektiven Defekt in ASM hat. Weitere Experimente lassen vermuten, dass Synapsin als Effektor stromabwärts der cAMP/PKA Kaskade wirkt. Ähnlich wie bei Drosophila spielt Synaspin auch in Vertebraten eine Rolle in unterschiedlichen Lernparadigmen (Gitler et al., 2004; Silva et al., 1996). Auch in der Meeresschnecke Aplysia wurde eine PKA abhängige Phosphorylierung von Synapsin als Mechanismus für die Regulierung von Neurotransmitterausschüttung und Kurzzeitplastizität vorgeschlagen (Angers et al., 2002; Fiumara et al., 2004). Synapsin wird für die Bildung eines Reserve-Pools von Vesikeln an der Präsynapse und für die Aufrechterhaltung der Vesikelausschüttung speziell bei anhaltender, hochfrequenter Stimulation von Nervenzellen benötigt (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). Im Gegensatz dazu wird Bruchpilot, ein Protein der aktiven Zone und homolog zu den ELKS/CAST Proteinen bei Säugern (Wagh et al., 2006), haupsächlich für sofortige Vesikelausschüttung gebraucht (Kittel et al., 2006). Bei wiederholter Stimulation an Motorneuronen einer bruchpilot Mutante ist die akute Vesikelausschüttung stark vermindert, während die darauf folgende andauernde Ausschüttung noch immer möglich ist (Kittel et al., 2006). Dazu passend beeinträchtigt eine künstliche Verminderung des Bruchpilot-Proteins die Ansammlung von Ca2+ Kanälen an den aktiven Zonen, sowie die Bildung von elektronendichten Strukturen (T-bars) an den präsynaptischen Endigungen. Deshalb akkumulieren weniger Vesikel des “readily-releasable” Pools an den Ausschüttungsstellen und die Ausschüttungswahrscheinlichkeit ist stark vermindert (Kittel et al., 2006; Wagh et al., 2006). In dieser Arbeit zeige ich zum ersten Mal, dass Bruchpilot für aversives olfaktorisches Gedächtnis benötigt wird. Der Ort an dem Bruchpilot hierfür gebraucht wird sind die Kenyon-Zellen des Pilzkörpers, die olfaktorischen Interneuronen zweiter Ordnung in Drosophila. Desweiteren zeige ich, dass die Funktion von Bruchpilot selektiv für das konsolidierte ARM ist. Da Synapsin spezifisch für das labile ASM benötigt wird, können diese beiden olfaktorischen Gedächtniskomponenten durch verschiedene synaptische Proteine getrennt werden, und zwei unterschiedliche Arten der Neurotransmitterausschüttung (abhängig von hoch- oder niedrig-frequenter Stimulation) könnten ASM und ARM auseinander halten.
2

Neurogenetic analyses of pain-relief learning in the fruit fly / Neurogenetische Analyse von pain-relief Lernen in der Fruchtfliege

Niewalda, Thomas January 2010 (has links) (PDF)
All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. Völler and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry. / Tiere müssen lernen, damit sie sich in ihrer Umwelt zurechtfinden und die Herausforderungen meistern können, die ihre Umwelt ihnen bietet. Dies gilt auch für Taufliegen im larvalen und erwachsenen Stadium, wie man mit der Pavlovschen Konditionierung zeigen kann. Der Schwerpunkt dieser Doktorarbeit liegt auf verschiedenen Aspekten der Lernfähigkeit von Taufliegen. In meinem Hauptprojekt erforsche ich die Arten von Lernprozessen, die stattfinden, wenn die Fliegen entweder den Beginn oder das Ende eines Elektroschocks mit einem Duft assoziieren. Wenn Taufliegen einen Duft wahrnehmen, der von einem Elektroschock gefolgt wird, lernen sie, dass dieser Duft Schmerz signalisiert, und werden ihn konsequenterweise in Zukunft vermeiden. Man kann die Abfolge dieser beiden Reize so umkehren, dass der Duft auf den Elektroschock folgt. Durch ein solches Training wird der Duft für die Fliegen zu einem Signal für das Ende des schmerzhaften Elektroschocks und sie werden, wenn sie diesen Duft später wieder einmal wahrnehmen, auf ihn zugehen. Ich berichte im ersten Kapitel über Experimente, die qualitative und parametrische Besonderheiten der letzteren Lernform untersuchen. Ich finde heraus, dass (i) das Lernen über das Ende des Elektroschocks echtes assoziatives Lernen ist, (ii) dass es eine relativ hohe Anzahl von Trainingsdurchgängen erfordert, (iii) dass Kontext-Schock-Training unbedeutend für anschließendes Schock-Duft-Lernen ist. Im zweiten Kapitel gehe ich der Frage nach, ob die genannten beiden Typen von Lernvorgängen gemeinsame genetische Determinanten haben. Was die Genetik anbelangt, teste ich die Lernfähigkeit eines Synapsin-Mutantenstammes, dem das Synapsinprotein fehlt. Lernen über den Beginn des Elektroschocks ist stark reduziert, und Lernen über das Ende des Elektroschocks fehlt gänzlich. Die Reduzierung des Synapsinproteins im Fliegengehirn durch RNAi resultiert in mutantenähnlichen Phänotypen. Dieser Befund bestätigt, dass der Lernphänotyp auf einem Mangel an Synapsin beruht. Die Expression von Synapsin im Pilzkörper der Mutante erlaubt der Fliege, wieder normal zu lernen; dies weist auf die Hinlänglichkeit von Synapsin im Pilzkörper für beide Arten von Lernen hin. In einem weiteren Projekt untersuche ich den Zusammenhang zwischen Wahrnehmung und Physiologie in erwachsenen Taufliegen. Ich benutze Duft-Schock-Konditionierungsexperimente, um basierend auf dem Verhalten der Tiere Ähnlichkeitsränge von Düften zu ermitteln, und finde eine einheitliche Rangfolge der untersuchten Düfte für verschiedene Generalisierungs- und Diskriminierungs-Aufgaben von unterschiedlichem Schwierigkeitsgrad. Schließlich erforsche ich in Kooperation mit T. Völler and A. Fiala, wie der Grad der Verhaltensähnlichkeit /-unähnlichkeit von Düften mit der Physiologie der Fliege in Beziehung steht. Ich kombiniere die Verhaltensdaten mit Daten, die mittels funktioneller Bildgebung unter Verwendung genetisch codierter Kalziumsensoren erhalten wurden. Diese Methode erlaubt, Aktivitätsmuster, die von den untersuchten Düften verursacht werden, entweder in den sensorischen Neuronen oder in den Projektionsneuronen des Antennallobus zu messen. Unsere Interpretation der Ergebnisse ist, dass die Verhaltensähnlichkeit der Düfte auf Ebene der Interneuronen im Antennallobus organisiert wird. Weiterhin erforsche ich die Wirkung von Kochsalz (Natriumchlorid) auf das Reflexverhalten und die Rolle von Natriumchlorid als Belohnung oder Bestrafung im Larvenlernen. Larven der Taufliege verändern ihr Reflexverhalten in Gegenwart von Natriumchlorid in hohem Maße. Larven bevorzugen niedrige Salzkonzentrationen gegenüber einem Substrat ohne Salz; erhöht man die Salzkonzentration jedoch, kehrt sich das Wahlverhalten ins Gegenteil um, bis die Tiere das salzhaltige Substrat stark vermeiden. Ein ähnlicher Zusammenhang zwischen Konzentration und Verhalten wird auch für das Fressverhalten gefunden: Larven fressen von einem Substrat mit niedrigen Salzkonzentrationen geringfügig mehr, von einem Substrat mit hohen Salzkonzentrationen jedoch deutlich weniger als von einem Kontrollsubstrat ganz ohne Salz. Was das Lernen betrifft, wirken relativ schwache Salzkonzentrationen als Belohnung, während hohe Salzkonzentrationen als Bestrafung wirken. Interessanterweise ist die Verhaltens-Konzentrations-Kurve von Reflexverhalten (Wahlverhalten, Fressverhalten) verglichen mit assoziativem Lernen in Richtung höherer Konzentrationen verschoben. Diese Dissoziation könnte eine verschiedenartige Sensitivität der Schaltkreise widerspiegeln.
3

Untersuchung zur Regulation der Expression des zuckerkonditionierten Verhaltens bei Drosophila melanogaster / Analysing the regulation of the expression of sugar-conditioned behaviour in Drosophila melanogaster

Gruber, Franz Andreas January 2010 (has links) (PDF)
In dieser Doktorarbeit habe ich die Regulation der Expression des zuckerbelohnten Verhaltens durch den Fütterungszustand bei Drosophila melanogaster untersucht. Die Fliegen können während einer Trainingsphase mit Hilfe einer Zuckerbelohnung auf einen bestimmten Duft konditioniert werden. Nach dem Training können die Fliegen dann auf das olfaktorische Gedächtnis getestet werden. Die Bereitschaft das zuckerkonditionierte Gedächtnis im Test zu zeigen wird vom Fütterungszustand kontrolliert, wie ich in Übereinstimmung mit den Ergebnissen früherer Arbeiten demonstrierte (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008). Nur nicht gefütterte Fliegen exprimieren das Gedächtnis, während Fütterungen bis kurz vor dem Test eine reversibel supprimierende Wirkung haben. Einen ähnlichen regulatorischen Einfluss übt der Futterentzug auch auf die Expression anderer futterbezogener Verhaltensweisen, wie z.B. die naive Zuckerpräferenz, aus. Nachdem ich den drastischen Einfluss des Fütterungszustands auf die Ausprägung des zuckerkonditionierten Verhaltens gezeigt bzw. bestätigt hatte, habe ich nach verhaltensregulierenden Faktoren gesucht, die bei einer Fütterung die Gedächtnisexpression unterdrücken. Als mögliche Kandidaten untersuchte ich Parameter, die zum Teil bereits bei verschiedenen futterbezogenen Verhaltensweisen unterschiedlicher Tierarten als „Sättigungssignale“ identifiziert worden waren (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). Dabei stellte sich heraus, dass weder die „ernährende“ Eigenschaft des Futters, noch ein durch Futteraufnahme bedingter Anstieg der internen Glukosekonzentration für die Suppression des zuckerkonditionierten Gedächtnisses notwendig sind. Die Unterdrückung der Gedächtnisexpression kann auch nicht durch Unterschiede in den aufgenommenen Futtermengen, die als verhaltensinhibitorische Dehnungssignale des Verdauungstrakts wirken könnten, oder mit der Stärke des süßen Geschmacks erklärt werden. Die Suppression des zuckerbelohnten Verhaltens folgte den Konzentrationen der gefütterten Substanzen und war unabhängig von deren chemischen Spezifität. Deshalb wird die Osmolarität des aufgenommenen Futters als ein entscheidender Faktor für die Unterdrückung der zuckerkonditionierten Gedächtnisexpression angenommen. Weil nur inkorporierte Substanzen einen Unterdrückungseffekt hatten, wird ein osmolaritätsdetektierender Mechanismus im Körper 67 postuliert, wahrscheinlich im Verdauungstrakt und/oder der Hämolymphe. Die Hämolymphosmolarität ist als „Sättigungssignal“ bei einigen wirbellosen Tieren bereits nachgewiesen worden (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Deshalb habe ich mit Hilfe genetischer Methoden und ohne die Fliegen zu füttern, versucht über einen künstlich induzierten Anstieg der Trehaloseund Lipidkonzentrationen die Osmolarität der Hämolymphe in Drosophila zu erhöhen. Eine solche konzentrationserhöhende Wirkung für Lipide und die Trehalose, dem Hauptblutzucker der Insekten, ist bereits für das adipokinetische Hormon (AKH), das von Zellen der Corpora cardiaca exprimiert wird, nachgewiesen worden (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). Es stellte sich heraus, dass die künstliche Stimulierung AKH-produzierender Neurone das zuckerkonditionierten Verhalten temporär, reversible und selektiv unterdrückt. Gleiche Behandlungen hatten keinen Effekt auf ein aversiv konditioniertes olfaktorisches Gedächtnis oder ein naives Zuckerpräferenzverhalten. Wie aus dieser Arbeit hervorgeht, stellt wahrscheinlich die Osmolarität des Verdauungstrakts und der Hämolymphe oder nur der Hämolymphe ein physiologisches Korrelat zum Fütterungszustand dar und wirkt als unterdrückendes Signal. Dass Fütterungen das zuckerkonditionierte Verhalten und die Zuckerpräferenz supprimieren, die künstliche Stimulation AKH-produzierender Zellen aber selektiv nur die zuckerbelohnte Gedächtnisexpression unterdrückt, deutet auf mindestens zwei unterschiedliche „Sättigungssignalwege“ hin. Außerdem macht es deutlich wie uneinheitlich futterbezogene Verhaltensweisen, wie das zuckerbelohnte Verhalten und die naive Zuckerpräferenz, reguliert werden. / In this work I investigated the regulation of the expression of the sugar conditioned behavior by feeding states in Drosophila melanogaster. During the training flies are able to associate an odor with a sugar reward. During the test these flies have the opportunity to show their odor memory. In accordance with previous findings (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008), I also showed that the readiness to express sugar conditioned memory is controlled by the feeding state. The memory was only displayed by starved flies, whereas feedings of the flies until the test cause a reversible and temporary suppression of conditioned behavior. Feeding states similarly influence the expression of other food-related behaviors like sugar preference. After I have showed/confirmed the drastic influence of feeding state on sugar conditioned behavior, I tried to search for factors which suppress the memory expression of conditioned flies during feeding. Therefore I verified physiological parameters as promising candidates which have already been identified as “satiation-signals” for different food-related behaviors through the animal kingdom (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). As the results revealed, neither the nutritional value of the available food nor an increase of the internal glucose-concentrations were necessary for suppressing conditioned behavior. Furthermore differences in sweet taste and in the amount of the ingested food, which likely serve as volumetric signals of the digestive system, were not critical determinants for inhibition of the memory expression. Because suppression followed the concentration of the substances independent of the chemical specificity, I conclude that the osmolarity of the ingested food is a critical factor for inhibition of sugar conditioned behavior. Only ingested substances were suppressive. Therefore an internal osmolarity-detecting mechanism is postulated, most probably in the digestive system or the hemolymph. Hemolymph-osmolarity has already been shown as a “satiation-signal” for some invertebrates (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Thus I tried to increase the hemolymph-osmolarity by an artificially induced rise of the concentration of lipids and trehalose, the main blood sugar of insects. A concentration-increasing effect such like this has already been shown for the adipokinetic hormone (AKH), which is expressed in cells of the corpora cardiaca (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). I demonstrated that an artificial stimulation of AKH69 producing neurons induces the suppression of sugar conditioned behavior, but leaves aversive conditioned behavior and naïve sugar preference unchanged. This work indicates that the osmolarity of the digestive system and the hemolymph or only of the hemolymph serves as (a) physiological correlate(s), which signals suppression. Feeding induced inhibition of the expression of sugar conditioned behavior and naïve sugar preference, whereas the artificial stimulation of AKH-producing cells selectively inhibited sugar rewarded memory expression alone. Thus I assume at least two separable “satiation”-pathways. Moreover these results demonstrate the non-uniform regulation of different food-related behaviors like sugar conditioned behavior and naïve sugar preference.
4

Honeybee Cognition: Aspects of Learning, Memory and Navigation in a Social Insect / Kognition bei Honigbienen: Aspekte zu Lernverhalten, Gedächtnis und Navigation bei einem sozialen Insekt

Pahl, Mario January 2011 (has links) (PDF)
Honeybees (Apis mellifera) forage on a great variety of plant species, navigate over large distances to crucial resources, and return to communicate the locations of food sources and potential new nest sites to nest mates using a symbolic dance language. In order to achieve this, honeybees have evolved a rich repertoire of adaptive behaviours, some of which were earlier believed to be restricted to vertebrates. In this thesis, I explore the mechanisms involved in honeybee learning, memory, numerical competence and navigation. The findings acquired in this thesis show that honeybees are not the simple reflex automats they were once believed to be. The level of sophistication I found in the bees’ memory, their learning ability, their time sense, their numerical competence and their navigational abilities are surprisingly similar to the results obtained in comparable experiments with vertebrates. Thus, we should reconsider the notion that a bigger brain automatically indicates higher intelligence. / Honigbienen (Apis mellifera) furagieren an vielen verschiedenen Pflanzenarten, und navigieren über große Distanzen zu wichtigen Ressourcen. Die räumliche Lage von Futterquellen und potentiellen neuen Nistplätzen teilen sie ihren Nestgenossinnen mithilfe einer symbolischen Tanzsprache mit. Um all dies leisten zu können, haben sie ein reiches Repertoire von adaptiven Verhaltensweisen evolviert. Mehr und mehr Verhaltensweisen, die man nur bei Vertebraten vermutet hätte, werden auch bei der Honigbiene entdeckt. In meiner Dissertation habe ich einige der Mechanismen erforscht, die beim Lernverhalten, der Gedächtnisbildung, der numerischen Kompetenz und der Navigation eine wichtige Rolle spielen. Die Ergebnisse, die in meiner Dissertation erzielt wurden, zeigen dass Honigbienen keineswegs die einfachen, reflexgesteuerten Organismen sind, als die sie lange Zeit angesehen wurden. Die Komplexität die ich im Gedächtnis, der Lernfähigkeit, dem Zeitsinn, der numerischen Kompetenz und der Navigationsfähigkeit der Bienen gefunden habe, ist erstaunlich ähnlich zu den Ergebnissen, die in vergleichbaren Experimenten mit Vertebraten erzielt wurden. Deshalb sollten wir die allgemeine Annahme, dass ein größeres Gehirn automatisch höhere Intelligenz bedeutet, überdenken.
5

Operant and classical learning in Drosophila melanogaster: the ignorant gene (ign) / Operantes und klassisches Lernen in Drosophila melanogaster: das ignorant Gen (ign)

Bertolucci, Franco January 2008 (has links) (PDF)
One of the major challenges in neuroscience is to understand the neuronal processes that underlie learning and memory. For example, what biochemical pathways underlie the coincidence detection between stimuli during classical conditioning, or between an action and its consequences during operant conditioning? In which neural substructures is this information stored? How similar are the pathways mediating these two types of associative learning and at which level do they diverge? The fly Drosophila melanogaster is an appropriate model organism to address these questions due to the availability of suitable learning paradigms and neurogenetic tools. It permits an extensive study of the functional role of the gene S6KII which in Drosophila had been found to be differentially involved in classical and operant conditioning (Bertolucci, 2002; Putz et al., 2004). Genomic rescue experiments showed that olfactory conditioning in the Tully machine, a paradigm for Pavlovian olfactory conditioning, depends on the presence of an intact S6KII gene. This rescue was successfully performed on both the null mutant and a partial deletion, suggesting that the removal of the phosphorylating unit of the kinase was the main cause of the functional defect. The GAL4/UAS system was used to achieve temporal and spatial control of S6KII expression. It was shown that expression of the kinase during the adult stage was essential for the rescue. This finding ruled out a developmental origin of the mutant learning phenotype. Furthermore, targeted spatial rescue of S6KII revealed a requirement in the mushroom bodies and excluded other brain structures like the median bundle, the antennal lobes and the central complex. This pattern is very similar to the one previously identified with the rutabaga mutant (Zars et al., 2000). Experiments with the double mutant rut, ign58-1 suggest that both rutabaga and S6KII operate in the same signalling pathway. Previous studies had already shown that deviating results from operant and classical conditioning point to different roles for S6KII in the two types of learning (Bertolucci, 2002; Putz, 2002). This conclusion was further strengthened by the defective performance of the transgenic lines in place learning and their normal behavior in olfactory conditioning. A novel type of learning experiment, called “idle experiment”, was designed. It is based on the conditioning of the walking activity and represents a purely operant task, overcoming some of the limitations of the “standard” heat-box experiment, a place learning paradigm. The novel nature of the idle experiment allowed exploring “learned helplessness” in flies, unveiling astonishing similarities to more complex organisms such as rats, mice and humans. Learned helplessness in Drosophila is found only in females and is sensitive to antidepressants. / Eine der größten Herausforderungen in der Neurobiologie ist es, die neuronalen Prozesse zu verstehen, die Lernen und Gedächtnis zugrundeliegen. Welche biochemischen Pfade liegen z.B. der Koinzidenzdetektion von Reizen (klassische Konditionierung) oder einer Handlung und ihren Konsequenzen (operante Konditionierung) zugrunde? In welchen neuronalen Unterstrukturen werden diese Informationen gespeichert? Wie ähnlich sind die Stoffwechselwege, die diese beiden Arten des assoziativen Lernens vermitteln und auf welchem Niveau divergieren sie? Drosophila melanogaster ist wegen der Verfügbarkeit von Lern-Paradigmen und neurogenetischen Werkzeugen ein geeigneter Modell-Organismus, zum diese Fragen zu adressieren. Er ermöglicht eine umfangreiche Studie der Funktion des Gens S6KII, das in der Taufliege in klassischer und operanter Konditionierung unterschiedlich involviert ist (Bertolucci, 2002; Putz et al., 2004). Rettungsexperimenten zeigen, dass die olfaktorische Konditionierung in der Tully Maschine (ein klassisches, Pawlow’sches Konditionierungsparadigma) von dem Vorhandensein eines intakten S6KII Gens abhängt. Die Rettung war sowohl mit einer vollständigen, als auch einer partiellen Deletion erfolgreich und dies zeigt, dass der Verlust der phosphorylierenden Untereinheit der Kinase die Hauptursache des Funktionsdefektes war. Das GAL4/UAS System wurde benutzt, um die S6KII Expression zeitlich und räumlich zu steuern. Es wurde gezeigt, dass die Expression der Kinase während des adulten Stadiums für die Rettung hinreichend war. Dieser Befund schließt eine Entwicklungsstörung als Ursache für den mutanten Phänotyp aus. Außerdem zeigte die gezielte räumliche Rettung von S6KII die Notwendigkeit der Pilzkörper und schloss Strukturen wie das mediane Bündel, die Antennalloben und den Zentralkomplex aus. Dieses Muster ist dem vorher mit der rutabaga Mutation identifizierten sehr ähnlich (Zars et al., 2000). Experimente mit der Doppelmutante rut, ign58-1 deuten an, dass rutabaga und S6KII im gleichen Signalweg aktiv sind. Vorhergehende Studien hatten bereits gezeigt, dass die unterschiedlichen Ergebnisse bei operanter und klassischer Konditionierung auf verschiedenen Rollen für S6KII in den zwei Arten des Lernens hindeuten (Bertolucci, 2002; Putz, 2002). Diese Schlussfolgerung wurde durch den mutanten Phänotyp der transgenen Linien in der Positionskonditionierung und ihr wildtypisches Verhalten in der klassischen Konditionierung zusätzlich bekräftigt. Eine neue Art von Lern-Experiment, genannt „Idle Experiment“, wurde entworfen. Es basiert auf der Konditionierung der Laufaktivität, stellt eine operante Aufgabenstellung dar und überwindet einige der Limitationen des „Standard“ Heat-Box Experimentes. Die neue Art des Idle Experimentes erlaubt es, „gelernte Hilflosigkeit“ in Fliegen zu erforschen, dabei zeigte sich eine erstaunliche Ähnlichkeit zu den Vorgängen in komplizierteren Organismen wie Ratten, Mäusen oder Menschen. Gelernte Hilflosigkeit in der Taufliege wurde nur in den Weibchen beobachtet und wird von Antidepressiva beeinflusst.
6

Behavioural and Structural Adaptation to Hippocampal Dysfunction in Humans

Pajkert, Anna Ewa 02 September 2020 (has links)
Die flexible Anwendung von Wissen in neuen Alltagssituationen ist eine notwendige kognitive Fähigkeit. Bisherige Studien betonen die zentrale Rolle des Hippocampus beim Lernen und Verknüpfen neuer Informationen mit bereits vorhandenem Wissen. Die funktionelle Integrität des Hippocampus ändert sich jedoch im Laufe des Lebens bzw. wird durch neuropsychiatrische Erkrankungen häufig beeinflusst. Die betroffenen Personen müssen deswegen adaptive Strategien entwickeln, um behaviorale Ziele weiter zu erreichen. Daher befasst sich meine Doktorarbeit mit Adaptationsprozessen im sich entwickelnden Gehirn und im vollständig entwickelten Gehirn mit einer hippocampalen Dysfunktion. Diese Synopsis umfasst dazu drei Studien: (1) zu behavioralen Strategien im sich entwickelnden Gehirn, (2) zu behavioralen Strategien im vollständig entwickelten Gehirn nach einer Läsion und (3) zu strukturellen Veränderungen im vollständig entwickelten Gehirn nach einer Läsion. Studie 1 zeigt einen altersgebundenen Wechsel beim assoziativen Gedächtnis: Kinder, Jugendliche und junge Erwachsene benutzen verschiedene Gedächtnisstrategien beim Integrieren von Gedächtnisinhalten. Studie 2 zeigt, dass die beobachteten Gedächtnisbeeinträchtigungen bei Patienten mit rechtsseitigen hippocampalen Läsionen sich nicht alleine durch ein Defizit des assoziativen Gedächtnisses erklären lassen, sondern auf einen zusätzlichen hippocampalen Beitrag zur Gedächtnisintegration zurückzuführen sind. Studie 3 zeigt, dass sich postoperative Adaptationsprozesse auf struktureller Ebene in überraschend kurzer Zeit ereignen und dass die strukturelle Reorganisation nicht nur im Hippocampus, sondern auch in entfernteren Hirnregionen, die mit dem Hippocampus verbunden sind, stattfindet. Zusammenfassend zeigen die Ergebnisse der drei Studien, dass Adaptationsprozesse im sich entwickelnden Gehirn sowie bei Erwachsenen mit einer hippocampalen Dysfunktion sowohl auf der behavioralen als auch auf der strukturellen Ebene auftreten. / Applying knowledge flexibly to new situations is a cognitive faculty that is necessary in every-day life. Previous findings emphasise the crucial role the hippocampus plays in learning and linking new information with pre-existing knowledge. However, the functional integrity of the hippocampus changes over the lifespan and is frequently affected by neuropsychiatric disorders. The affected subjects must, therefore, develop adaptive strategies to achieve behavioural goals. Thus, my doctoral thesis deals with adaptation processes in the developing brain and in adult brains with a hippocampal dysfunction. This synopsis encompasses three studies on: (1) behavioural strategies in the developing brain, (2) behavioural strategies in the lesioned fully developed brain, and (3) structural changes in the lesioned fully developed brain. Study 1 suggests an age-related shift in the associative memory: Children, adolescents, and young adults use different memory strategies when integrating information. Study 2 suggests that the memory deficits observed in patients with right-sided hippocampal lesions are not merely a consequence of an impaired associative memory but rather result from an additional hippocampal contribution to the memory integration. Study 3 suggests that postoperative structural adaptation processes occur on a surprisingly short time-scale, and this structural reorganisation happens not only in the hippocampus but also in distant brain areas connected to the hippocampus. In conclusion, findings from these three studies show that adaptation processes in the developing brain and in adult brains with hippocampal dysfunction occur on both the behavioural and the structural level.

Page generated in 0.4518 seconds