• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of vegetation, fire and other disturbance factors on small mammal, ecology and conservation.

Wilson, Barbara Anne, mikewood@deakin.edu.au January 1990 (has links)
The relationship of vegetation and disturbance factors to the distribution, abundance and diversity of small mammals in the eastern Otway region, Victoria were investigated. Antechinus stuartii, Rattus fuscipes and Rattus lutreolus were widely distributed and occurred in the majority of the eleven floristic vegetation groups identified. Antechinus minimus, Antechinus swainsonnii and Pseudomys novaehollandiae had restricted distributions and were recorded in only two or three vegetation groups. New information on the distribution of the rare species P. novaehollandiae, was obtained and two floristically rich vegetation groups that it preferred were identified. Species-rich small mammal communities occurred in vegetation communities with high numbers of sclerophyll plant species and high structural diversity. Maximum food resources were considered to be provided in these communities. Local habitat diversity was also correlated with species-richness. Small mammal abundance was maximum in non-sclerophyllous canmunities, where high plant productivity was considered to be important. For the first time, the presence of the plant pathogen Phytophthora cinnamomi was shown to affect small mammals. It was associated with small mammal communities of low species richness and abundance, Recovery of small mammal populations after wildfire was slow until the fourth year. Mus musculus reached peak abundance from 2-3 years and then declined rapidly. P. novaehollandiae was the only native species that achieved maximum abundance early in the succession. A. stuartii, R. fuscipes and R. lutreolus approached maximum abundance in mid-succession, while Isoodon obesulus was a mid- to late-successional species. A. minimus survived the fire, but did not persist after one year. The pattern of succession was influenced by attributes of species, such as survival after fire, their ability to disperse and reproduce.
2

The Effects of Phytophthora Cinnamomi on heathland flora and fauna of the Eastern Otway Ranges.

Laidlaw, William Scott, mikewood@deakin.edu.au January 1997 (has links)
The plant pathogen, Phytophthora dnnamomi, is a cause of dieback disease observed in sclerophyll vegetation in Australia, The effects of P. dnnamomi on flora and fauna were studied at two locations in heathland vegetation near the coastal town of Anglesea, Victoria. The pathogen was isolated from soils beneath diseased heathland plants. The extent of diseased vegetation was assessed by the presence and absence of highly sensitive indicator species, Xanthorrhoea australis and hopogon ceratophyllus. The characteristics of heathland vegetation exhibiting dieback disease associated with the presence of P. dnnamomi were investigated. Plant species richness was similar between diseased and non-diseased areas however diseased areas were characterised by significant declines in the cover and frequency of susceptible species, increases in resistant species and increases in percent cover of open ground. Compared to non-diseased areas, diseased areas exhibited fewer shrub species and decreased shrub cover. The percentage cover and number of species of sedges, lilies and grasses were higher in diseased areas. Structural differences were significant between 0-0.6 m with decreased cover of vegetation in diseased areas. Differences in structure between diseased and non-diseased areas were not as great as expected due to increases in the cover of resistant species. A number of regenerating X australis were observed in post-disease areas. Cluster analysis of floristic data could clearly separate diseased and non-diseased trap stations. The population dynamics and habitat use of eight small mammal species present were compared in diseased and non-diseased areas using trapping and radio-tracking techniques. The number of small mammal species captured in post-disease areas was significantly lower than non-diseased areas. Mean captures of Antechinus stuartii and Rattus fiisdpes were significantly lower in diseased areas on Grid B. Mean captures of Rattus lutreolus were significantly lower in diseased areas on both study grids. Significant differences were not observed in every season over the two year study period. Radio tracking revealed more observations of Sminthopsis leucopus in non-diseased vegetation than in diseased. Cercartetus nanus was frequently observed to utilise the disease susceptible X. australis for nesting. At one location, the recovery of vegetation and small mammal communities in non-diseased and diseased vegetation after fuel reduction burning was monitored for three years post-fire. Return of plant species after fire in both disease classes were similar, reaching 75% of pre-fire richness after three years. Vegetation cover was slower to return after fire in diseased areas. Of the seven small mammal species captured pre-fire, five were regularly captured in the three years after fire. General linear model analysis revealed a significant influence of disease on capture rates for total small mammals before fire and a significant influence of fire on capture rates for total small mammals after fire. After three years, the influence of fire on capture rates was reduced no significant difference was detected between disease classes. Measurements of microclimate indicate that diseased, burnt heathland was likely to experience greater extremes of temperature and wind speed. Seeding of diseased heathland with X. australis resulted in the establishment of seedlings of this sensitive species. The reported distributions of the mamma] species in Victoria were analysed to determine which species were associated with the reported distribution of dieback disease. Twenty-two species have more than 20% of their known distribution in diseased areas. Five of these species, Pseudomys novaehollandiae, Pseudomys fumeust Pseudomys shortridgei, Potorous longipes and Petrogale pencillata are rare or endangered in Victoria. Four of the twenty-two species, Sminthopsis leucopus, Isoodon obesulus, Cercartetus nanus and Rottus lutreolus am observed in Victorian heathlands. Phytophthora cinnamomi changes both the structure and floristics of heathland vegetation in the eastern Qtway Ranges. Small mammals respond to these changes through decreased utilisation of diseased heathland. The pathogen threatens the diversity of species present and future research efforts should be directed towards limiting its spread and rehabilitating diseased areas.

Page generated in 0.0619 seconds