• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prediction of lubrication starvation and its effect on the lubricating characteristics

Hsieh, Min-Chun 12 September 2012 (has links)
Excess lubricant can be found as reservoirs on the sides of the rolling tracks when the oil flows through the Hertzian contact and the side leakage. Uniform lubricant layers adhered to both rolling surfaces can flow into the supply region by the action of surface tension. Uniform lubricant layers are separated by air so that they move with the surfaces the surface tension of the liquid-air interface and the velocity of the roller. Hence, it can be considered as the fixed flow rate conditions. Under the lubricant starvation and the fixed flow rate conditions, the meniscus in the film inlet is formed due to the action of the surface tension of the oil-air interface, where the fluid pressure in the oil layer is smaller than the ambient pressure. An empirical formula to predict the thickness of the oil layer is derived based on the theoretical analysis and the experimental results of Cann et al. [10]. Results show that this thickness increases the amount of oil in the track and the surface tension of the liquid-air interface, but it decreases with the surface velocity and the oil viscosity. Moreover, the starved, fully flooded, over-flooded regimes are established based on the theoretical analysis. Under the lubricant starvation and the fixed flow rate conditions, the central film thickness in the pressure region increases with increasing the supply flow rate, so that the location of the meniscus moves to upstream. When the supply flow rate is more than 98% flow rate of fully flooded condition, the central film thickness achieves a saturated value. Hence, when the supply flow rate is between 98% and 100% flow rate of fully flooded condition, it is called the fully flooded regime. When the supply flow rate is more than the flow rate of fully flooded condition, the central film thickness remains constant, and the excess oil accumulates in the inlet region, so that the film thickness in the inlet region increases with time. When the supply flow rate is larger than the flow rate of fully flooded condition, it is called the over-flooded region.

Page generated in 0.1045 seconds