• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

P-bigon right-veeringness and overtwisted contact structures

Ramirez Aviles, Camila Alexandra 01 May 2017 (has links)
A contact structure is a maximally non-integrable hyperplane field $\xi$ on an odd-dimensional manifold $M$. In $3$-dimensional contact geometry, there is a fundamental dichotomy, where a contact structure is either tight or overtwisted. Making use of Giroux's correspondence between contact structures and open books for $3$-dimensional manifolds, Honda, Kazez, and Mat\'{i}c proved that verifying whether a mapping class is right-veering or not gives a way of detecting tightness of the compatible contact structure. As a counter-part to right-veering mapping classes, right-veering closed braids have been studied by Baldwin and others. Ito and Kawamuro have shown how various results on open books can be translated to results on closed braids; introducing the notion of quasi right-veering closed braids to provide a sufficient condition which guarantees tightness. We use the related concept of $P$-bigon right-veeringness for closed braids to show that given a $3$-dimensional contact manifold $(M, \xi)$ supported by an open book $(S, \phi)$, if $L \subset (M, \xi)$ is a non-$P$-bigon right-veering transverse link in pure braid position with respect to $(S, \phi)$, performing $0$-surgery along $L$ produces an overtwisted contact manifold $(M', \xi')$. Furthermore, if we suppose $L \subset (M, \xi)$ is a pure and non-quasi right-veering braid with respect to $(S, \phi)$, performing $p$-surgery along $L$, for $p \geq 0$, gives rise to an open book $(S', \phi')$ which supports an overtwisted contact manifold $(M', \xi')$.

Page generated in 0.1168 seconds