131 |
The response of human umbilical vein endothelial cells and blood platelets to modified NiTi surfacesPlant, Stuart D. January 2003 (has links)
No description available.
|
132 |
The oxidation of trans-2-butene and propene between 400 and 520 degree CStothard, Nigel David January 1990 (has links)
No description available.
|
133 |
Coupled enzymatic oxidation of methanolHarrison, David Michael. 10 April 2008 (has links)
No description available.
|
134 |
A spectroscopic study of some semiquinone radical ionsBarker, Philip James January 1977 (has links)
The effect of substituents on the value of the oxidation potential of quinones is reviewed and attempts to prepare substituted diphenoquinones with high oxidation potentials are reported. Attempts to characterise the mechanism of addition and substitution in diphenoquinones by identifying the products of the Thiele acetylation of diphenoquinone are reported. The reaction proved most efficient when the incoming acetylinium ion is directed by substituents in the diphenoquinone. A 1,8-addition to diphenoquinone is reported and characterised by isolating the products of the reaction between acetyl chloride and diphenoquinone, with perchloric acid as catalyst. The alternating linewidth effects observed in e.s.r.spectra are discussed and applied to account for such effects observed in the e.s.r.spectra of diphenosemiquinone anion and cation radicals. The spectra are analysed and the intramolecular processes producing these effects are discussed. A dianion diradical where intramolecular rotation about the 1 - 1' bond is restricted is produced by the oxidation of 2,2' ,4,4' -tetra hydroxybiphenyl. Previous studies of diphenosemiquinone anions are reviewed and alkylated diphenosemiquinone anion are produced by the reduction of the parent quinone with potassium hydroxide solution, the resulting radical being stabilised by the presence of pyridine. A qualitative interpretation of the solvent-ion effect in alkylated diphenosemiquinone anions is given. Diphanosemiquinone cation radicals are reviewed and previous studies are re-examined.
|
135 |
The role of supported cobalt catalysts in the methane partial oxidation reaction.Jeannot, John Charl January 1995 (has links)
A dissertation submitted to the Faculty of Engineering, University of the
Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree
of Masters of Science in Engineering. / The partial oxidation of methane by air to synthesis gas over supported cobalt
catalysts was studied. The investigation included analysis of the products of
this reaction at various temperatures, and of the structure of the catalysts
using powder X-ray diffraction techniques. (Abbreviation abstract) / Andrew Chakane 2018
|
136 |
The role of supported cobalt catalysts in the methane partial oxidation reaction.Jeannot, John Charl January 1995 (has links)
A dissertation submitted to the Faculty of Engineering, University of the
Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree
of Masters of Science in Engineering. / The partial oxidation of methane by air to synthesis gas over supported cobalt
catalysts was studied. The investigation included analysis of the products of
this reaction at various temperatures, and of the structure of the catalysts
using powder X-ray diffraction techniques. The most effective catalyst for this
reaction was found to be metallic cobalt supported on rhombohedral alumina
(prepared as lO%Co/C/'r-A103)' In the presence of this catalyst 96% of tile
feed was completely converted to synthesis gas (CO: 2H2) at lOOO°C. This
catalyst showed no evidence of coking or loss of activity at lOfO°C over a
period of 180 hours. The reaction mechanism is thought to occur in two stages
over two distinct zones of the catalyst, Complete reaction of O2 with CH4 to
form CO2 and H20 is followed, in the second stage, by reforming and the water
gas shift reaction to produce synthesis gas. / Andrew Chakane 2018
|
137 |
Metal catalyzed air oxidation of toluene for the production of benzaldehyde, benzyl alcohol and benzoic acid-process improvement.January 1991 (has links)
by Yam Chi Ming. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1991. / Bibliography: leaves 132-135. / TABLE OF CONTENTS / DESCRIPTIVE NOTE PAGE / ABSTRACT --- p.iii / ACKNOWLEDGEMENTS --- p.v / Chapter CHAPTER ONE: --- BACKGROUND SURVEY OF THE CHEMISTRY OF THE OXIDATION OF ORGANIC COMPOUNDS --- p.1 / Chapter 1.0 --- Introduction --- p.1 / Chapter 1.1 --- Catalytic Oxidation of Toluene --- p.4 / Chapter 1.1.1 --- Metal-catalyzed Air Oxidation of Organic Compounds --- p.4 / Chapter 1.1.2 --- Metal-catalyzed Air Oxidation of Alkyl-Aromatic Compounds --- p.11 / Chapter 1.1.3 --- Cobalt-catalyzed Air Oxidation of Toluene --- p.12 / Chapter 1.2 --- Industrial Metal-catalyzed Air Oxidation of Toluene --- p.13 / Chapter 1.3 --- Scope of this Thesis --- p.16 / Chapter CHAPTER TWO: --- EXPERIMENTAL --- p.20 / Chapter 2.1 --- Reactor System Description --- p.20 / Chapter 2.1.1 --- Liquid Sampling Unit --- p.23 / Chapter 2.1.2 --- Gas and Reagent/Catalyst Inlet --- p.23 / Chapter 2.1.3 --- Recycling Unit --- p.26 / Chapter 2.1.4 --- Vapour Disposal --- p.28 / Chapter 2.2 --- Practical Operation Consideration --- p.30 / Chapter 2.3 --- Process (Experimental) Parameter Control --- p.33 / Chapter 2.3.1 --- Gas Inlet and Input Pressure Control --- p.33 / Chapter 2.3.2 --- Gas Outlet and System Pressure Control --- p.34 / Chapter 2.3.3 --- System Temperature Control --- p.35 / Chapter 2.4 --- Data Acquisition --- p.36 / Chapter 2.5 --- Experimental Procedures --- p.38 / Chapter 2.5.1 --- Initial Operation Testing --- p.38 / Chapter 2.5.2 --- General Procedures --- p.38 / Chapter 2.5.3 --- Experimental Conditions --- p.41 / Chapter 2.5.3.1 --- Air Oxidation of Toluene --- p.41 / Chapter 2.5.3.2 --- Cobalt-catalyzed Air Oxidation of Toluene --- p.43 / Chapter 2.5.3.3 --- Silver-catalyzed Air Oxidation of Toluene --- p.47 / Chapter 2.5.3.4 --- Cobalt-Silver Co- catalyzed Air Oxidation of Toluene --- p.47 / Chapter 2.5.3.5 --- Hydrogen Peroxide Experiment --- p.47 / Chapter 2.6 --- Reactor Product Analysis --- p.48 / Chapter 2.6.1 --- Liquid Sample Analysis --- p.48 / Chapter 2.6.2 --- Cobalt (II)Analysis --- p.49 / Chapter 2.7 --- Product Identification and Confirmation by 1H Nuclear Magnetic Resonance --- p.56 / Chapter CHAPTER THREE: --- RESULTS AND DISCUSSIONS --- p.58 / Chapter 3.0 --- Introduction --- p.58 / Chapter 3.1 --- Air Oxidation of Toluene --- p.60 / Chapter 3.2 --- Cobalt-catalyzed Air Oxidation of Toluene --- p.75 / Chapter 3.3 --- Silver-catalyzed Air Oxidation of Toluene --- p.96 / Chapter 3.4 --- Cobalt-Silver Co-catalyzed Air Oxidation of Toluene --- p.106 / Chapter 3.5 --- Industrial Applications --- p.116 / Chapter CHAPTER FOUR: --- CONCLUSION --- p.126 / BIBLIOGRAPHY --- p.132 / Chapter APPENDIX I --- Computer Program for the Integrator --- p.136 / Chapter APPENDIX II --- Raw Data for the Experimental Runs --- p.140 / Chapter APPENDIX III --- Raw Data for Different Trials of Run #11 --- p.160 / Chapter APPENDIX IV --- "Raw Data for the Calibration of Benzaldehyde, Benzyl Alcohol, Benzoic Acid, Benzyl Acetate, Benzyl Benzoate and Cobalt (II)" --- p.161
|
138 |
Part 1, Arene oxidation with 2,6-dichloropyridine N-oxide catalyzed by ruthenium porphyrins: Part 2, Imine complexes of ruthenium and manganese with acyclic tetradentate N₂O₂-donors as oxidation catalysts for styrene oxidation. / Arene oxidation with 2,6-dichloropyridine N-oxide catalyzed by ruthenium porphyrins / Imine complexes of ruthenium and manganese with acyclic tetradentate N₂O₂-donors as oxidation catalysts for styrene oxidationJanuary 1998 (has links)
by Lo Tim Lun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 68-71). / Abstract also in Chinese. / Acknowledgments --- p.i / Abstract --- p.ii / Abbreviations --- p.iii / Table of Contents --- p.iv / Chapter Part 1. --- "Arene Oxidation with 2,6-Dichloropyridine- N-oxide Catalyzed by Ruthenium Porphyrins" --- p.1 / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Natural Occurrence of Cytochrome P-450 --- p.1 / Chapter 1.2 --- Biomimetic Models of Cytochromes of P-450 --- p.4 / Chapter 1.3 --- Homogenous Metalloporphyin Catalyzed Oxidation Mimicking Cytochrome P-450 --- p.5 / Chapter 1.4 --- Synthetic Porphyrin Revolution: Third Generation of Porphyrins --- p.6 / Chapter 1.5 --- Fourth-Generation of Porphyrins --- p.9 / Chapter 1.6 --- Variation of Oxygen Donors and Bound Transition Metals --- p.11 / Chapter 1.7 --- Objective --- p.12 / Chapter 2. --- Results and Discussion --- p.15 / Chapter 2.1 --- Synthesis of β-tetraaryl Substituted Mesitylporphyrin and their Ruthenium Carbonyl Complexes --- p.15 / Chapter 2.2 --- "Oxidation of Aromatic Compounds Catalyzed by Ruthenium Porphyrins in 2,6-Dichloropyridine N-oxide System" --- p.17 / Chapter 2.3 --- "Synthesis of trans-Dichloro-tetrakis(p-chlorophenyl)- tetramesitylporphyrinato Ruthenium(IV) Complex, trans- RuTMP(p-ClPh)4(Cl2)" --- p.21 / Chapter 2.4 --- "Oxidation of Aromatic Compounds Catalyzed by trans- Ru(TMP)(p-ClPh)4(Cl2) with 2,6-Dichloropyridine N- oxide" --- p.24 / Chapter 2.5 --- "Effect of Additives to the Catalytic Oxidation of Aromatic Compound by Ru(por)-2,6-Dichloropyridine N- oxide" --- p.24 / Chapter 2.6 --- "Effect of Lewis Acids on the Catalytic Oxidation of Aromatic Compound by Ru(por)-2,6-Dichloropyridine N- oxide" --- p.27 / Chapter 3. --- Conclusion --- p.29 / Chapter 4. --- Experimental Section --- p.30 / Chapter 5. --- Reference --- p.39 / Chapter Part 2. --- Imine Complexes of Ruthenium and Manganese with Acyclic Tetradenate N202-Donors as Oxidation Catalysts for Styrene Epoxidation --- p.42 / Chapter 1 --- Introduction --- p.42 / Chapter 1.1 --- Salen-type Metal Complexes with N202 Anionic Donor Set --- p.43 / Chapter 1.2 --- High-valent Ruthenium Complexes with π-Aromatic Imine Ligand --- p.45 / Chapter 1.3 --- Objective --- p.47 / Chapter 1.3.1 --- Metal Complexes of Phenanthroline-π-aromatized Imlne --- p.47 / Chapter 1.3.2 --- Ruthenium Complex of Jacobsen Ligand --- p.48 / Chapter 2 --- Results and Discussion --- p.50 / Chapter 2.1 --- "Synthesis of cis-Dicarbonyl-[(R,R)-N, N,-bis(3,5-di-tert- butylsalcylidene)-1,2-cyclohexanediaminato (2-)] Ruthenium(II) Complex" --- p.50 / Chapter 2.2 --- "Synthesis of 2,9-Bis(3,5-di-tert-butyl-2-hydroxyphenyl)- 1,10-phenanthroline and Its Manganese and Ruthenium Complexes" --- p.55 / Chapter 2.3 --- Epoxidation of Styrene Catalyzed by Manganese and Ruthenium Phenanthroline Complexes with Hyprochlorite as Oxidant in Different pH Media --- p.58 / Chapter 3. --- Conclusion --- p.60 / Chapter 4. --- Experimental Section --- p.61 / Chapter 5. --- Reference --- p.69 / Appendix --- p.73 / NMR Spectra --- p.78
|
139 |
Enhancement of biodegradation of atrazine by photocatalytic oxidation =: 利用光催化氧化作用加强阿特拉津的生物降解. / 利用光催化氧化作用加强阿特拉津的生物降解 / Enhancement of biodegradation of atrazine by photocatalytic oxidation =: Li yong guang cui hua yang hua zuo yong jia qiang e te la jin de sheng wu xiang jie. / Li yong guang cui hua yang hua zuo yong jia qiang e te la jin de sheng wu xiang jieJanuary 2002 (has links)
by Chan Cho-Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 161-173). / Text in English; abstracts in English and Chinese. / by Chan Cho-Yin. / Acknowledgements --- p.i / Abstracts --- p.ii / Table of Contents --- p.vi / List of Figures --- p.xii / List of Plates --- p.xv / List of Tables --- p.xvi / Abbreviations --- p.xix / Equations --- p.1 / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Atrazine --- p.1 / Chapter 1.1.1 --- Characteristics of atrazine --- p.1 / Chapter 1.1.2 --- Use of atrazine --- p.7 / Chapter 1.1.3 --- Inhibitory mechanisms --- p.7 / Chapter 1.1.4 --- Global annual consumption --- p.7 / Chapter 1.1.5 --- Environmental fate --- p.8 / Chapter 1.1.5.1 --- Major intermediates --- p.10 / Chapter 1.1.6 --- Ecotoxicity --- p.10 / Chapter 1.1.6.1 --- Toxicity towards microorganisms --- p.10 / Chapter 1.1.6.2 --- Toxicity towards invertebrates --- p.12 / Chapter 1.1.6.3 --- Toxicity towards vertebrates --- p.15 / Chapter 1.1.7 --- Environmental regulations --- p.16 / Chapter 1.2 --- Treatments of atrazine --- p.16 / Chapter 1.2.1 --- Physical treatments --- p.16 / Chapter 1.2.2 --- Chemical treatments --- p.18 / Chapter 1.2.3 --- Advanced Oxidation Processes (AOPs) --- p.19 / Chapter 1.2.4 --- Photocatalytic Oxidation (PCO) --- p.21 / Chapter 1.2.4.1 --- Cyanuric acid --- p.26 / Chapter 1.2.5 --- Biological treatments --- p.33 / Chapter 1.2.6 --- Integration of treatment methods --- p.36 / Chapter 2 --- Objectives --- p.38 / Chapter 3 --- Materials and methods --- p.39 / Chapter 3.1 --- Photocatalytic oxidation (PCO) reaction --- p.39 / Chapter 3.1.1 --- Chemical reagents --- p.39 / Chapter 3.1.2 --- Photocatalytic reactor --- p.39 / Chapter 3.1.3 --- Determination of atrazine --- p.43 / Chapter 3.1.4 --- Optimization of PCO reactions --- p.43 / Chapter 3.1.4.1 --- Effect of initial hydrogen peroxide concentration --- p.49 / Chapter 3.1.4.2 --- Effect of titanium dioxide concentration --- p.49 / Chapter 3.1.4.3 --- Effect of initial pH --- p.50 / Chapter 3.1.4.4 --- Effect of UV intensities --- p.50 / Chapter 3.1.4.5 --- Internal control of parameters --- p.50 / Chapter 3.1.4.6 --- Combination study of parameters: part one --- p.50 / Chapter 3.1.4.7 --- Combination study of parameters: part two --- p.50 / Chapter 3.1.5 --- Detection methods of atrazine degradation intermediates/products --- p.51 / Chapter 3.1.5.1 --- Gas chromatography-mass spectrometry --- p.51 / Chapter 3.1.5.2 --- High performance liquid chromatography --- p.51 / Chapter 3.1.6 --- Investigation of PCO treated solution --- p.54 / Chapter 3.1.6.1 --- Total organic carbon content --- p.54 / Chapter 3.1.6.2 --- Anions content --- p.54 / Chapter 3.1.6.3 --- pH --- p.56 / Chapter 3.1.6.4 --- Hydrogen peroxide content --- p.56 / Chapter 3.1.6.5 --- Toxicity --- p.56 / Chapter 3.1.6.5.1 --- Microtox® test --- p.56 / Chapter 3.1.6.5.2 --- Amphipod survival test --- p.57 / Chapter 3.2 --- Biodegradation reaction --- p.61 / Chapter 3.2.1 --- Chemical reagents --- p.61 / Chapter 3.2.2 --- Sampling --- p.62 / Chapter 3.2.3 --- Enrichment --- p.62 / Chapter 3.2.4 --- Isolation --- p.65 / Chapter 3.2.5 --- Purification --- p.65 / Chapter 3.2.6 --- Identification of bacterial strain --- p.65 / Chapter 3.2.6.1 --- Gram staining --- p.66 / Chapter 3.2.6.2 --- Catalase and oxidase tests --- p.66 / Chapter 3.2.6.3 --- Sherlock Microbial Identification System (MIDI) --- p.66 / Chapter 3.2.6.4 --- Biolog MicroLog´ёØ system (Biolog) --- p.67 / Chapter 3.2.7 --- Determination of cyanuric acid --- p.67 / Chapter 3.2.8 --- Selection of cyanuric acid degrading bacteria --- p.67 / Chapter 3.2.9 --- Optimization of reaction conditions --- p.67 / Chapter 3.2.9.1 --- Starting medium --- p.68 / Chapter 3.2.9.2 --- Effect of temperatures --- p.68 / Chapter 3.2.9.3 --- Effect of initial pH --- p.69 / Chapter 3.2.9.4 --- Effect of agitation rates --- p.69 / Chapter 3.2.9.5 --- Effect of initial cyanuric acid and glucose concentrations --- p.70 / Chapter 3.2.9.6 --- Investigation of biodegraded solution --- p.70 / Chapter 3.2.9.6.1 --- Glucose content --- p.70 / Chapter 3.2.9.6.2 --- Biodegradation metabolite(s) of cyanuric acid --- p.70 / Chapter 3.3 --- Integration of photocatalytic oxidation and biodegradation --- p.71 / Chapter 4 --- Results --- p.72 / Chapter 4.1 --- Photocatalytic oxidation (PCO) reaction --- p.72 / Chapter 4.1.1 --- Determination of atrazine --- p.72 / Chapter 4.1.2 --- Effect of aeration and mixing --- p.72 / Chapter 4.1.3 --- Effect of initial hydrogen peroxide concentrations --- p.72 / Chapter 4.1.4 --- Effect of titanium dioxide concentrations --- p.78 / Chapter 4.1.5 --- Effect of initial pH --- p.78 / Chapter 4.1.6 --- Effect of UV intensities --- p.78 / Chapter 4.1.7 --- Effect of different internal controls --- p.85 / Chapter 4.1.8 --- "Combination of UV intensities, initial hydrogen peroxide and titanium dioxide concentrations" --- p.85 / Chapter 4.1.9 --- "Combination of initial pH, atrazine concentrations and UV intensities" --- p.94 / Chapter 4.1.10 --- Degradation products detected by GC/MS --- p.94 / Chapter 4.1.11 --- Degradation products detected by HPLC --- p.94 / Chapter 4.1.12 --- Total organic carbon removal --- p.104 / Chapter 4.1.13 --- Anions content --- p.104 / Chapter 4.1.14 --- Solution pH --- p.104 / Chapter 4.1.15 --- Hydrogen peroxide content --- p.108 / Chapter 4.1.16 --- Microtox® test --- p.108 / Chapter 4.1.17 --- Amphipod survival test --- p.114 / Chapter 4.2 --- Biodegradation reaction --- p.118 / Chapter 4.2.1 --- Isolation of bacterial colonies --- p.118 / Chapter 4.2.2 --- Identification and characterization of the isolated bacteria --- p.118 / Chapter 4.2.3 --- Selection of cyanuric acid degrading species --- p.118 / Chapter 4.2.4 --- Effect of temperatures --- p.128 / Chapter 4.2.5 --- Effect of initial pH --- p.128 / Chapter 4.2.6 --- Effect of agitation rates --- p.128 / Chapter 4.2.7 --- Effect of cyanuric acid and glucose concentrations --- p.132 / Chapter 4.2.8 --- Glucose content --- p.132 / Chapter 4.2.9 --- Biodegradation metabolites of cyanuric acid --- p.132 / Chapter 4.2.10 --- Proposed pathway of atrazine degradation by biodegradation enhanced by PCO --- p.138 / Chapter 4.3 --- Integration of photocatalytic oxidation and biodegradation --- p.138 / Chapter 5 --- Discussion --- p.141 / Chapter 5.1 --- Photocatalytic oxidation (PCO) reaction --- p.141 / Chapter 5.1.1 --- Determination of atrazine --- p.141 / Chapter 5.1.2 --- Effect of aeration and mixing --- p.141 / Chapter 5.1.3 --- Effect of initial hydrogen peroxide concentrations --- p.141 / Chapter 5.1.4 --- Effect of titanium dioxide concentrations --- p.143 / Chapter 5.1.5 --- Effect of initial pH --- p.143 / Chapter 5.1.6 --- Effect of UV intensities --- p.144 / Chapter 5.1.7 --- Effect of different internal controls --- p.145 / Chapter 5.1.8 --- "Combination of UV intensities, initial hydrogen peroxide and titanium dioxide concentrations" --- p.145 / Chapter 5.1.9 --- "Combination of initial pH, atrazine concentrations and UV intensities" --- p.146 / Chapter 5.1.10 --- Degradation products detected by GC/MS --- p.146 / Chapter 5.1.11 --- Degradation products detected by HPLC --- p.147 / Chapter 5.1.12 --- Total organic carbon removal --- p.147 / Chapter 5.1.13 --- Anions content --- p.148 / Chapter 5.1.14 --- Solution pH --- p.149 / Chapter 5.1.15 --- Hydrogen peroxide content --- p.149 / Chapter 5.1.16 --- Microtox® test --- p.149 / Chapter 5.1.17 --- Amphipod survival test --- p.150 / Chapter 5.2 --- Biodegradation reaction --- p.151 / Chapter 5.2.1 --- Isolation of bacterial colonies --- p.151 / Chapter 5.2.2 --- Identification and characterization of the isolated bacteria --- p.151 / Chapter 5.2.3 --- Selection of cyanuric acid degrading species --- p.152 / Chapter 5.2.4 --- Effect of temperatures --- p.152 / Chapter 5.2.5 --- Effect of initial pH --- p.153 / Chapter 5.2.6 --- Effect of agitation rates --- p.153 / Chapter 5.2.7 --- Effect of cyanuric acid and glucose concentrations --- p.154 / Chapter 5.2.8 --- Glucose content --- p.154 / Chapter 5.2.9 --- Biodegradation metabolites of cyanuric acid --- p.155 / Chapter 5.2.10 --- Proposed degradation pathway of atrazine by biodegradation enhanced by PCO --- p.155 / Chapter 5.3 --- Integration of photocatalytic oxidation and biodegradation --- p.155 / Chapter 6 --- Conclusions --- p.159 / Chapter 7 --- References --- p.161 / Appendix1 --- p.174 / Appendix2 --- p.175
|
140 |
Photocatalytic carbon(CO)-carbon(α) bond oxidation of ketones with water by group 9 metalloporphyrins. / Photocatalytic carbon(CO)-carbon(alpha) bond oxidation of ketones with water by group 9 metalloporphyrins / CUHK electronic theses & dissertations collectionJanuary 2013 (has links)
Lee, Siu Yin. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
Page generated in 0.0938 seconds