• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3708
  • 1522
  • 520
  • 350
  • 106
  • 88
  • 73
  • 70
  • 64
  • 57
  • 36
  • 30
  • 30
  • 30
  • 30
  • Tagged with
  • 7754
  • 2014
  • 1225
  • 1213
  • 714
  • 711
  • 684
  • 646
  • 579
  • 539
  • 525
  • 512
  • 496
  • 470
  • 450
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Solution deposition and characterization of the thin film inorganic materials /

Özmen, Bahar. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 52-56). Also available on the World Wide Web.
62

Vapor deposited europium doped lutetium oxide for X-ray imaging applications

Topping, Stephen G. January 2012 (has links)
Thesis (Ph.D.)--Boston University / Lutetium oxide doped with europium oxide (Lu20 3:Eu3+) has been established to be a bright, dense scintillator materi al with vast potential in both medical and high resolution X-ray imaging applications. Unfortunately its commercial viability has been restricted due to the manufacturing and post treatment costs associated with device fabrication. This research was aimed at the development of two vapor deposition techniques; chemical and physical vapor deposition (CVD and PVD), to produce coatings of Lu203:Eu3+ for various X-ray imaging applications. A customized CVD process to codeposit Lu20 3 and Eu20 3 was developed using lutetium and europium chloride (LuCb and EuCI3) precursors and reacting with carbon dioxide (C02) and hydrogen (H2) . An in depth study was performed by systematically varying the process parameters to explore the deposition kinetics and identify the rate limiting steps and their effects on the growth morphology using both cold and hot wall CVD reactors. The activation energy for the kinetically limited deposition of Lu20 3 from the LuCI3 - Ar - C02 - H2 system was identified to be approximately 170 kJ/mol , which is significantly lower than expected. The predominant growth orientations were identified to be { 111} and { 100} , depending on the deposition conditions. As the temperature is increased, the growth orientation preference decreases to produce a randomly oriented growth at 1150°C. The scintillation and X-ray imaging characteristics of a co-deposited Lu203:Eu3+ thin film with a {100} orientation were measured, confirming the feasibility and applicability of the CVD system to produce thick scintillator x-ray imaging devices. A fundamental study of the PVD process was performed by sputtering of Lu203:Eu3+ using a single target magnetron sputtering gun. Systematic vatiations of the deposition parameters were used to understand the effect of the ejected flux kinetic energies and deposition rate on the deposit density, stress, optical and scintillation properties. The deposition system was subsequently optimized for rapid, dense growth of a 10 um thick Lu203:Eu3+ coating at elevated temperatures. The X-ray imaging properties were measured and the results yielded an X-ray imaging resolution slightly better than 1 um with the potential for 0.5 um with further optimization, a level never before attained.
63

The effects of hydrating agents on the hydration of industrial magnesium oxide

Matabola, Kgabo Phillemon 25 August 2009 (has links)
Magnesium hydroxide, a stable flame retardant, can be obtained by mining or by the hydration of magnesium oxide. In this study, the effect of different hydrating agents on the pH of the hydrating solution, rate of hydration of MgO to Mg(OH)2 and product surface area were studied as a function of the temperature of hydration. Ammonium chloride, magnesium acetate, magnesium nitrate, nitric acid, acetic acid, water, magnesium chloride, sodium acetate and hydrochloric acid were used as hydrating agents. The hydration experiments were carried out in a water bath between 30 - 80 oC for 30 minutes. Dried MgO samples were introduced to the hydrating solution and the slurry was stirred at a constant speed. At the end of each experiment, the slurry was vacuum filtered, washed with water, dried at 200 oC and hand ground. The products were then characterized by TGA, XRF, XRD and BET surface area analyses. There was not a significant difference in the hydration behaviour of the hydrating agents up to 50 oC, where less than 10 % of magnesium hydroxide was formed. When compared to the hydration in water, all the hydrating agents with the exception of sodium acetate showed a significant increase in the degree of hydration. Sodium acetate formed the lowest amount of magnesium hydroxide, ranging between 1.2 and 12.2 % magnesium hydroxide. Hydrations performed in hydrochloric acid and magnesium nitrate formed the largest percentage (11.8 %) of magnesium hydroxide at 60 oC. Magnesium acetate, magnesium nitrate, magnesium chloride and hydrochloric acid seemed to be the most effective hydrating agents at 70 oC with the percentage magnesium hydroxide being formed ranging between 20.0 and 23.9 %. The amount of hydroxide formed doubled at 80 oC, with the largest percentage (56.7 %) formed from the hydration in magnesium acetate. The hydration reaction seemed to be dependent upon the presence of Mg2+ and acetate ions. It seemed that magnesium oxide hydration is a dissolution-precipitation process controlled by the dissolution of magnesium oxide. The results have also indicated that the pH and temperature of the hydrating solution strongly influence the degree of hydration. / Chemistry / M.Sc. (Chemistry)
64

Defect structure and electrical properties of CaO-stabilized ZrO2

Low, Norman Man-Pak January 1967 (has links)
The cubic fluorite-type solid solution of ZrO₂ containing 15 mole % CaO has been prepared by the hot-pressing process. The effects of annealing on the change.of lattice parameter, electrical properties, and density of the solid solution have been investigated. The lattice parameter of the cubic solid solution was found to depend on the heat treatment of the specimens. The decrease of lattice parameter with annealing temperature and time has been interpreted either in terms of the removal of interstitial oxygen ions from the." lattice or in terms of the inhomogeneous distribution of the CaO in the ZrO₂ lattice. The activation energy for conduction was also found to depend on the heat treatment of the specimens. The variation of activation energy with annealing temperature has been interpreted in terms of pairing and clustering of the oxygen vacancies with the substitutional Ca ions in the solid solution. The minimum activation energy obtained in the present investigation corresponded to the theoretically predicted activation energy for the migration of oxygen vacancies. / Applied Science, Faculty of / Materials Engineering, Department of / Graduate
65

Methane, nitrogen monoxide, and nitrous oxide fluxes in an organic soil

Dunfield, Peter F. January 1997 (has links)
No description available.
66

Emission of Insoluble Mineral Particles from Ultrasonic Humidifiers

Yao, Wenchuo 10 January 2018 (has links)
Ultrasonic humidifier use is a potential source of human exposure to inhalable particulates. This paper focused on the behavior of insoluble iron oxides particles, and aluminum oxide particles in ultrasonic humidifiers. 10 mg/L Fe oxide particles and 5 mg/L Al oxide suspension solutions were added into tap water, as fill water for ultrasonic humidifiers operated for 14 hours. Denser, heavier particles of approximate 1.5 um diameter of iron or aluminum oxides accumulated in the humidifier reservoir. Smaller, suspended metal oxide particles of 0.22-0.57 um diameter were emitted as aerosols from humidifiers. Soluble anions and cations in tap water were present in the aerosols emitted from humidifiers. The results indicate that if suspended particles and dissolved minerals are present in source water, they will be transported in aerosolized waters. / M. S.
67

The hydration of magnesium oxide with different reactivities by water and magnesium acetate

Aphane, Mathibela Elias 30 March 2007 (has links)
The use of magnesium hydroxide (Mg(OH)2) as a flame retardant and smoke-suppressor in polymeric materials has been of great interest recently. Because it contains no halogens or heavy metals, it is more environmentally friendly than the flame retardants based on antimony metals or halogenated compounds. Mg(OH)2 can be produced by the hydration of magnesium oxide (MgO), which is usually produced industrially from the calcination of the mineral magnesite (MgCO3). The thermal treatment of the calcination process dramatically affects the reactivity of the MgO formed. Reactivity of MgO refers to the extent and the rate of hydration thereof to Mg(OH)2. The aim of this study was to investigate the effect of calcination time and temperature on the reactivity of MgO, by studying the extent of its hydration to Mg(OH)2, using water and magnesium acetate as hydrating agents. A thermogravimetric analysis (TGA) method was used to determine the degree of hydration of MgO to Mg(OH)2. The reactivity of MgO was determined by BET (Brunauer, Emmett and Teller) surface area analysis and a citric acid reactivity method. Other techniques used included XRD, XRF and particle size analysis by milling and sieving. The product obtained from the hydration of MgO in magnesium acetate solutions contains mainly Mg(OH)2, but also some unreacted magnesium acetate. Magnesium acetate decomposition reaction takes place in the same temperature range as magnesium hydroxide, which complicates the quantitative TG analysis of the hydrated samples. As a result, a thermogravimetric method was developed to quantitatively determine the amounts of Mg(OH)2 and Mg(CH3COO)2 in a mixture thereof. The extent to which different experimental parameters (concentration of magnesium acetate, solid to liquid ratio and hydration time) influence the degree of hydration of MgO were evaluated using magnesium acetate as a hydrating agent. Magnesium acetate was found to enhance the degree of MgO hydration when compared to water. By increasing the hydration time, an increase in the percentage of Mg(OH)2 formed was observed. In order to study the effect of calcining time and temperature on the hydration of the MgO, the MgO samples were then calcined at different time periods and at different temperatures. The results have shown that the calcination temperature is the main variable affecting the surface area and reactivity of MgO. Lastly, an attempt was made to investigate the time for maximum hydration of MgO calcined at 650, 1000 and 1200oC. From the amounts of Mg(OH)2 obtained in magnesium acetate, it seems that the same maximum degree of hydration is obtained after different hydration times. A levelling effect that was independent of the calcination temperature of MgO was obtained for the hydrations performed in magnesium acetate. Although there was an increase in the percentage of Mg(OH)2 obtained from hydration of MgO in water, the levelling effect observed in magnesium acetate was not observed in water as a hydrating agent, and it seemed that the extent of MgO hydration in water was still increasing. The results obtained in this study demonstrate that the calcination temperature can affect the reactivity of MgO considerably, and that by increasing the hydration time, the degree of hydration of MgO to Mg(OH)2 is enhanced dramatically. / Chemistry / M. Sc. (Chemistry)
68

Design and synthesis of human dimethylarginine dimethylaminohydrolase (DDAH) inhibitors and development of a novel DDAH activity assay

Tommasi, Sara January 2015 (has links)
Nitric oxide (NO) is a key physiological messenger, but an excessive production of this molecule can be detrimental, leading to the onset or worsening of many pathological conditions. Dimethylarginine dimethylaminohydrolase (DDAH) is a key enzyme in the NO pathway, involved in the metabolism of asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA), which are both endogenous inhibitors of NO synthesis. Two isoforms of DDAH have been identified in humans, namely DDAH-1 and DDAH-2. DDAH inhibition represents a promising strategy in the treatment of NO overproduction under pathological conditions without affecting the homeostatic role of this messenger. In this work I described the design and synthesis of 12 novel potential DDAH inhibitors together with the development of a new UPLC-MS based assay to measure the activity of HEK293T cell lysates overexpressing recombinant human DDAH-1 in metabolizing ADMA into dimethylamine and L-citrulline. The same assay was used to assess the potential of the novel compounds, as well as of the well-known DDAH inhibitor L-257, to inhibit DDAH-1 catalyzed L-citrulline formation from ADMA. Three of the novel molecules (compounds 10a, 14a and 14b) showed very interesting inhibitory activity: in particular, the methylacylsulfonamide analogue of L-257 (10a) resulted in 13-fold higher inhibition potency than L-257 itself (98% of inhibition at 1mM, IC50 = 3±3 μM and Ki = 1±0 μM). This molecule was chosen for molecular dynamics simulations to study the putative mechanism for 10a inhibition of DDAH-1 activity. Furthermore, DDAH-1 and DDAH-2 were engineered introducing a FLAG-tag at the C-terminal of the proteins to allow their purification from the lysate components by immunoprecipitation. Although the purification protocol requires some further improvement, the fusion proteins did not show to be functionally affected by the modification.
69

Low noise operation in deep depletion mode MOS transistors

Carruthers, Colin January 1989 (has links)
No description available.
70

Fabrication and characterization of zinc oxide (ZnO) nanostructures

Leung, Yu-hang., 梁宇恆. January 2006 (has links)
published_or_final_version / abstract / Physics / Master / Master of Philosophy

Page generated in 0.0361 seconds