1 |
The synthesis and characterisation of complex metal oxide materialsCrooks, Richard James January 1997 (has links)
No description available.
|
2 |
Sol-gel synthesis and properties of nanoscopic aluminum fluorideEltanany, Gehan 02 October 2007 (has links)
Aluminiumfluorid (HS-AlF3), das mit Hilfe des Sol-Gel-Verfahrens unter nicht-wässrigen Bedingungen hergestellt wird, weist eine extrem große Oberfläche und eine hohe Lewis-Acidität auf, die mit den stärksten bekannten Lewis-Säuren wie SbF5 und ACF vergleichbar ist. Diese ungewöhnlichen Eigenschaften werden im Ergebnis einer neuen Sol-Gel-Synthese erhalten, die die Fluorolyse eines Aluminium-Alkoxids durch wasserfreien Fluorwasserstoff in organischen Lösungsmitteln zur Grundlage hat. Das zunächst in einer amorphen, katalytisch inaktiven Vorstufe mit großer Oberfläche gebildete Gel wird nach anschließender Trocknung mit gasförmigen Fluorierungsmitteln nachfluoriert, wobei die aktive Form des HS-AlF3 erhalten wird. Im Rahmen der vorliegenden Arbeit wurden alle Schritte dieses Syntheseweges untersucht und die Ergebnisse einschließlich einer detaillierten Analyse der erhaltenen Materialien diskutiert. Des Weiteren wurde HS-AlF3 durch eine Imprägnierungs-Methode auf das Trägermaterial Al2O3 aufgetragen, wobei verschiedene Beladungen mit HS-AlF3 getestet wurden. Die Eigenschaften des HS-AlF3/Al2O3 als Lewis-Säure-Katalysator wurden mittels der Dismutierung von CHClF2 und der Isomerisierung von CBrF2CBrFCF3 bestimmt. Die Herstellung von AlFyOx mit Hilfe des Sol-Gel-Verfahrens ist ebenfalls beschrieben, wobei das Produkt amorph ist und eine große Oberfläche von bis zu 240 m2/g aufweist. / Aluminum fluoride (HS-AlF3) prepared via sol-gel synthesis route under non-aqueous conditions exhibits high surface area and an extremely strong Lewis acidity, comparable with some of the strongest known Lewis acids such as SbF5 and ACF. The basis of its unusual properties is the sol-gel fluorination of aluminum alkoxide with anhydrous HF in organic solvents yielding first an amorphous catalytically inactive precursor with high surface area, which can be dried and eventually post-fluorinated to get HS-AlF3. In this thesis, all steps of the synthesis route were thoroughly investigated. The results of these investigations together with detailed analysis of the obtained materials are reported and discussed. HS-AlF3 supported on Al2O3 with different HS-AlF3 loadings was prepared by wet impregnation method. The properties of the HS-AlF3/Al2O3 samples as Lewis acid catalyst were evaluated for CHClF2 dismutation and CBrF2CBrFCF3 isomerization. The preparation of AlFyOx via sol-gel method is also reported. AlFyOx prepared is amorphous and have high surface are up to 240 m2/g.
|
3 |
SYNTHESES AND STRUCTURES OF RHENIUM(VII) AND MANGANESE(VII) OXIDE FLUORIDES, MANGANESE(V, IV) FLUORIDES, AND THE FIRST OXIDE OF XENON(II)Ivanova, Maria January 2016 (has links)
This Thesis extends the chemistry of group VII transition metal oxide fluorides, namely ReO3F and MnO3F. The fundamental chemistry of ReO3F has been significantly extended with the development of its high-yield and high-purity synthesis. This has been achieved by solvolysis of Re2O7 in anhydrous HF (aHF) followed by reaction of the water formed with dissolved F2 at room temperature. The improved synthesis has allowed the Lewis acid and fluoride-ion donor-acceptor properties of ReO3F to be further investigated. The Lewis acid-base complex, (HF)2ReO3F·HF, was obtained by dissolution of ReO3F in aHF at room temperature and was characterized by vibrational spectroscopy with aid of quantum-chemical calculations and single-crystal X-ray diffraction at −173 °C. The HF molecules are F-coordinated to rhenium, representing the only known example of an HF complex with rhenium. The study of the fluoride-ion acceptor properties of ReO3F resulted in the syntheses and characterization of the [{ReO3(μ-F)}3(μ3-O)]2−, [ReO3F3]2−, and [ReO3F2]− anions. The [{ReO3(μ-F)}3(μ3-O)]2− anion was obtained as the [N(CH3)4]+ salt by the reaction of stoichiometric amounts of ReO3F and [N(CH3)4]F in CH3CN solvent. The anion was structurally characterized in CH3CN solution by 1D and 2D 19F NMR spectroscopy and in the solid state by Raman spectroscopy and a single-crystal X-ray structure determination of [N(CH3)4]2[{ReO3(μ-F)}3(μ3-O)]·CH3CN. The structure of the [{ReO3(μ-F)}3(μ3-O)]2– anion consists of three ReO3F units linked to each other through dicoordinate bridging fluorine atoms (F) and a central tricoordinate bridging oxygen atom (O3). Calculated vibrational frequencies and Raman intensities of the [{MO3(μ-F)}3(μ3-O)]2− (C3v) and [{MO3(μ-F)}3(μ3-F)]− (C3v) anions (M = Re, Tc) have been used to assign the Raman spectrum of [N(CH3)4]2[{ReO3(μ-F)}3(μ3-O)]·CH3CN. The fac-[ReO3F3]2− and [ReO3F2]− anions have been synthesized by the reactions of ReO3F with CsF and KF in aHF, and by reaction of ReO3F with NOF. Additionally, the [ReO3F2]− anion has been synthesized by the reaction of ReO3F with [NH4]F in aHF. Both anions were characterized by Raman spectroscopy in the solid state and single-crystal X-ray diffraction. The calculated vibrational frequencies of the fac-[ReO3F3]2− (C3v) and [(µ-F)4(ReO3F)4]4− (C4v) anions were used to assign the Raman spectra of fac-[ReO3F3]2− and [ReO3F2]−, respectively. The rhenium atoms in the open-chain, fluorine-bridged [ReO3F2]− anion and the monomeric fac-[ReO3F3]2− anion are six-coordinate with a facial arrangement of the oxygen ligands. The fluoride-ion donor properties were established by the reactions of ReO3F with excess AsF5 and SbF5/SO2ClF. Both reactions resulted in the formation of white friable solids, µ-O(ReO2F)(AsF5)∙2AsF5 and [ReO3][Sb3F16]. The [ReO3][Sb3F16] salt is stable at room temperature and decomposes to [ReO2F2][SbF5], when maintained at 45 oC under dynamic vacuum. The µ-O(ReO2F)(AsF5)∙2AsF5, however, slowly decomposes at 0 oC to ReO3F and AsF5. Both products were characterized by Raman spectroscopy in the solid state with aid of quantum-chemical calculations. The vibrational analyses revealed that the geometry of [ReO3][Sb3F16] is consistent with a trigonal pyramidal arrangement of oxygen atoms around rhenium, whereas in µ-O(ReO2F)(AsF5)∙2AsF5, ReO3F interacts with one of the AsF5 molecules through an O-bridge, which represents the first example of such type of bonding. The reactions of µ-O(ReO2F)(AsF5)∙2AsF5 and [ReO3][Sb3F16] with CH3CN resulted in the formation of the white salts, [O3Re(NCCH3)3][PnF6] (Pn = As, Sb), which were characterized by Raman spectroscopy.
The reactivity of ReO3F has been extended to the synthesis of a new Re(VII) oxide fluoride, (μ-F)4{[μ-O(ReO2F)2](ReO2F2)2}, which was synthesized by the reaction of 1:3 molar ratio of ReO3F and ReO2F3. The compound, (μ-F)4{[μ-O(ReO2F)2](ReO2F2)2}, a rare example of an O-bridged rhenium oxide fluoride, has been characterized by single-crystal X-ray diffraction and solid-state Raman spectroscopy. The vibrational assignments of (μ-F)4{[μ-O(ReO2F)2](ReO2F2)2} were confirmed by 18O-enrichment and quantum-chemical calculations.
The improved synthesis of ReO3F has also led to the synthesis and characterization of the novel [XeOXeOXe]2+ cation as its [μ-F(ReO2F3)2]− salt by the low-temperature reaction of ReO3F and XeF2 in aHF. The [XeOXeOXe]2+ cation provides an unprecedented example of a xenon(II) oxide and a noble-gas oxocation as well as a rare example of a noble-gas dication. The crystal structure of [XeOXeOXe][µ-F(ReO2F3)2]2 consists of a planar, zigzag-shaped [XeOXeOXe]2+ cation (C2h symmetry) that is fluorine bridged through its terminal xenon atoms to two [µ-F(ReO2F3)2]– anions. The Raman spectra of the natural abundance and 18O-enriched [XeOXeOXe]2+ salts are consistent with a centrosymmetric (C2h) cation geometry. Quantum-chemical calculations were used to aid in the vibrational assignments of [Xe16/18OXe16/18OXe][µ-F(Re16/18O2F3)2]2 and to assess the bonding in [XeOXeOXe]2+ by NBO, QTAIM, ELF, and MEPS analyses. Ion pair interactions occur through Re–Fμ---Xe bridges, which are predominantly electrostatic in nature and result from polarization of the Fμ-atom electron densities by the exposed core charges of the terminal xenon atoms. Each xenon(II) atom is surrounded by a torus of xenon valence electron density comprised of the three valence electron lone pairs. The positive regions of the terminal xenon atoms and associated fluorine bridge bonds correspond to the positive σ-holes and donor interactions that are associated with “halogen bonding”.
The reactions of MnO3F with noble-gas fluorides, KrF2 and XeF6, have been studied as the possible synthetic routes to MnOF5 and MnO2F3. The reaction of MnO3F with KrF2 yielded a red solid, which was isolated as a crystalline solid at room temperature and its crystal structure was assigned to manganese(V) fluoride, MnF5. The crystal structure of polymeric MnF5 consists of MnF6-octahedra which are trans-coordinated through fluorine bridges. The geometrical parameters of MnF5 could not be reliably determined due to unresolved twinning issues. The reaction of MnO3F with KrF2 in the presence of K[HF2] yielded a red-orange solid mixture of K[MnF6] (soluble in HF) and MnF3 (insoluble in HF). The HF solution of the solid mixture was characterized by 19F NMR spectroscopy and the resonance observed in the 19F NMR spectrum was preliminary assigned to [MnF6] by comparison with the chemical shift observed in the 19F NMR spectrum of MnO3F. Additionally, MnO3F was characterized by 19F−55Mn COSY NMR and 55Mn NMR spectroscopies, the latter provided the first 1J(19F−55Mn) coupling constant. The K[MnF6] salt was also characterized by single-crystal X-ray diffraction. The resulting octahedral geometry is imposed by symmetry, therefore, the anticipated Jahn-Teller distortion, which would result in D4h symmetry for the [MnF6] anion, could not be observed. The reaction of MnO3F with XeF6 resulted in the isolation of [Xe2F11]2[MnF6] and [XeF5]2[MnF6]. Both salts were characterized by low-temperature single-crystal X-ray diffraction. The [Xe2F11]2[MnF6] salt was additionally characterized by low-temperature Raman spectroscopy with the aid of quantum-chemical calculations, whereas the assignment of the known Raman spectrum of [XeF5]2[MnF6] has been improved in the present work. / Thesis / Doctor of Philosophy (PhD)
|
4 |
Oxide and Oxide Fluoride Chemistry of Xenon(VIII), Xenon(VI), and IridiumGoettel, James T. January 2017 (has links)
This Thesis extends our fundamental knowledge of high-oxidation-state chemistry and in particular compounds of Xe(VIII), Xe(VI), and Ir(V). The crystal structure of XeVIIIO4 was obtained and provides important information on this fundamentally interesting endothermic and shock-sensitive compound. Macroscopic amounts of XeO3F2 have been prepared for the first time. Although the low-temperature Raman spectrum of solid XeO3F2 exhibits some frequency shifts and band splittings of the bending modes, the spectrum is similar to the Raman spectrum of the previously reported matrix-isolated compound. The crystal structures of decomposition and byproducts resulting from the syntheses of XeO3F2 have been obtained for [XeF5][HF2]∙XeOF4 and XeF2∙XeO2F2.
The solid-state structure of xenon trioxide, XeO3, was reinvestigated by low-temperature single-crystal X-ray diffraction and shown to exhibit polymorphism that is dependent on crystallization conditions. The previously reported α-phase (orthorhombic, P212121) only forms upon evaporation of aqueous HF solutions of XeO3. In contrast, two new phases, β-XeO3 (rhombohedral, R3) and gamma-XeO3 (rhombohedral, R3c) have been obtained by slow evaporation of aqueous solutions of XeO3. The extended structures of all three phases result from Xe=O----Xe bridge interactions among XeO3 molecules that arise from the amphoteric donor-acceptor nature of XeO3. The Xe atom of the trigonal pyramidal XeO3-unit has three Xe---O secondary bonding interactions. The orthorhombic α-phase displays the greatest degree of variation among the contact distances and has a significantly higher density than the rhombohedral phases. The ambient-temperature Raman spectra of solid α- and gamma-XeO3 have also been obtained and assigned for the first time.
Xenon trioxide interacts with CH3CN and CH3CH2CN to form O3XeNCCH3, O3Xe(NCCH3)2, O3XeNCCH2CH3, and O3Xe(NCCH2CH3)2. Their low-temperature single-crystal X-ray structures show that the xenon atoms are consistently coordinated to three electron-donor atoms which result in pseudo-octahedral environments around their xenon atoms. The adduct series provides the first examples of a neutral xenon oxide bound to nitrogen bases. Energy-minimized gas-phase geometries and vibrational frequencies were obtained for the model compounds O3Xe(NCCH3)n (n = 1−3) and O3Xe(NCCH3)n∙[O3Xe(NCCH3)2]2 (n = 1, 2). The natural bond orbital (NBO), quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and molecular electrostatic potential surface (MEPS) analyses were carried out to further probe the nature of the bonding in these adducts.
Xenon trioxide forms adducts with the polytopic nitrogen base ligands: hexamine, DABCO, 2,2’-bipyridine, 1,10-phenanthroline, and 4,4’-bipyridine. The adducts were conveniently synthesized in aqueous or CH3CN solutions and are stable at room temperature. The crystal structures of hexamine∙2XeO3, hexamine∙XeO3∙H2O, 2,2’-bipyridine∙XeO3, 1,10-phenanthroline∙XeO3, and 4,4’-bipyridine∙XeO3 have been determined by low-temperature single-crystal X-ray diffraction. The structures consist of XeO3 molecules bridged by the ligands to form extended supramolecular networks with Xe---N bonds which range from 2.634(3) to 2.829(2) Å. Raman spectroscopy was used to characterize and probe the room-temperature stabilities of these adducts. The reaction of 1,4-diazabicyclo[2.2.2]octane (DABCO) with XeO3 in aqueous solutions yields thin, plate-shaped crystals which are severely twinned whereas the reaction of DABCO with XeO3 in the presence of HF forms [DABCOH]2[F2(XeO3)2]∙H2O and [DABCOH2][F][H2F3] which were also characterized by low-temperature X-ray crystallography and Raman spectroscopy. A reversible temperature-dependent phase transition occurred for [DABCOH]2[F2(XeO3)2]∙H2O. The structures of 2,2’-bipy∙XeO3 and 1,10-phen∙XeO3 provide the first examples of noble-gas chelates. The structure of hexamine∙XeO3∙H2O provides the first instance in which a noble-gas centre is coordinated by water. These compounds also represent the first examples of sp2- and sp3-hybridized N---Xe(VI) bonds and are rare examples of noble-gas compounds that are air-stable at ambient temperatures.
Adducts between XeO3 and three molar equivalents of the nitrogen bases, pyridine and 4-dimethylaminopyridine (4-DMAP), have been synthesized and characterized. The crystal structures of (C5H5N)3XeO3, {(CH3)2)2NC5H4N}3XeO3∙H2O have been determined by low-temperature single-crystal X-ray diffraction. The reaction of hydrolyzed XeF6 in acetonitrile with pyridine or 4-DMAP afforded [C5H5NH]4[HF2]2[F2(XeO3)2] and [(CH3)2NC5H4NH][HF2]∙XeO3 which were characterized by low-temperature X-ray crystallography and Raman spectroscopy. The structures contain pyridinium cations that are hydrogen bonded to the fluoride coordinated to XeO3 and can be viewed as pyridinium fluoroxenates. The structure of (CH3)2NC5H5N∙XeO3∙H2O contains a water molecule that is hydrogen bonded to two oxygen atoms of two adjacent XeO3 molecules. The pyridine adduct, (C5H5N)3XeO3, was found to be relatively insensitive to shock, whereas the 4-DMAP adduct was extremely shock sensitive.
The number of isolable compounds which contain different noble-gas−element bonds is limited for xenon and even more so for krypton. Examples of Xe−Cl bonds are rare and prior to this work, no definitive evidence for a Xe−Br bonded compound existed. The syntheses, isolation, and characterization of the first compounds to contain Xe−Br bonds ([N(C2H5)4]3[Br3(XeO3)3] and [N(CH3)4]4[Br4(XeO3)4]) and their chlorine analogues are described. The bromo- and chloroxenate salts are stable in the atmosphere at room temperature and were characterized in the solid state by Raman spectroscopy, low-temperature single-crystal X-ray diffraction, and in the gas phase by quantum-chemical calculations. They are the only known examples of cage anions that contain a noble-gas element. The Xe−Br and Xe−Cl bonds are weakly covalent and can be viewed as σ-hole interactions, similar to halogen bonds.
Xenon trioxide reacts with alkali metal fluorides and chlorides to form a variety of room-temperature stable fluoro- and chloroxenate salts. The reaction of XeO3 with various ratios of KF in water afforded three new compounds. The crystal structures of α-K[F(XeO3)2], β-K[F(XeO3)2], α-K[FXeO3], K2[F2(XeO3)] have been determined. The reaction of XeO3 with aqueous CsF resulted in Cs3[F3(XeO3)2]. The XeVI−F bond lengths range from 2.3520(18) to 2.5927(17) Å. No stable product was isolated when [N(CH3)4]F was the fluoride source, but in the presence of HF, crystals of [N(CH3)4]3[HF2]2[H2F3]∙2XeO3 were obtained. The reaction of KCl with XeO3 in equimolar amounts resulted in the formation of K[ClXeO3] whereas the analogous reaction with CsCl yielded Cs3[Cl3(XeO3)4].
Attempts to synthesize Xe–P and Xe–S bonded compounds were unsuccessful and instead resulted in adducts between XeO3 and O-bases such as the phosphine oxide adduct, {(C6H5)3PO}2XeO3 and dimethylsulfoxide (DMSO) adduct {(CH3)2SO}3(XeO3)2. Although DMSO was found to be resistant to oxidation by XeO3, no significant Xe---S bonding interactions were observed. Acetone was found to be highly resistant to oxidation by XeO3 and forms {(CH3)2CO}3XeO3 at low temperatures. The reaction of pyridine-N-oxide yielded large crystals of (C5H5NO)3(XeO3)2 in which the structure contains short chains in contrast with ((CH3)2SO)3(XeO3)2 whose structure consists of discrete dimers. The reaction of XeO3 with the oxidatively resistant main-group oxide anion source, [N(CH3)4][OTeF5] in CH3CN solvent afforded [N(CH3)4][F5TeOXeO3(CH3CN)2].
Xenon trioxide reacts with potassium hydroxide to form the previously known K4[XeO6]∙2XeO3 salt which was characterized by Raman spectroscopy and low-temperature X-ray crystallography. The reaction of MgO with XeO3 yielded single crystals of [Mg(OH2)6]4[XeO6(XeO3)12O2]∙12H2O, which also contains perxenate-XeO3 interactions. Alkali metal carbonates also incorporate XeO3 into their crystal lattices. Raman spectra of M2[CO3(XeO3)n]∙xH2O (M = Na, K, Rb) were recorded and contain intense bands assigned to the XeO3 stretching modes and very weak bands assigned to the [CO3]2− modes. The reaction of dilute aqueous solutions of XeO3 with RbOH and atmospheric CO2 afforded single crystals of Rb2[CO3(XeO3)2]∙2H2O which were characterized by low-temperature X-ray crystallography. Attempts to incorporate XeO3 into other polyatomic anion salts such as KMnO4, NaClO3, and NaNO3 were unsuccessful.
The reaction of IrO2 with XeF6 in aHF provided [Xe2F11][IrF6], whereas the reaction of IrO2 with KrF2 with ClF3 in anhydrous HF solvent provided [ClO2][Ir2F11] and [ClO2][(μ-OIrF4)3]. The structure of [(μ-OIrF4)3]− consists of a six membered Ir3O3 ring with four terminal fluorine atoms on each Ir atom. It was also found that ClF3 forms an adduct with [Xe2F11][HF2] in which the structural parameters of ClF3 are very similar to that of solid ClF3. The [ClO2][Ir2F11] salt provides the first structural information on the [Ir2F11]− anion and the [(μ-OIrF4)3]− anion represents the first isolated iridium oxide fluoride species. / Thesis / Doctor of Philosophy (PhD) / Xenon is a noble-gas element which is located in the far right-hand column of the periodic table and was previously thought to be chemically unreactive and incapable of forming compounds. In 1962, it was shown that xenon reacts with the most reactive compounds, such as elemental fluorine, but the resulting xenon compounds are themselves highly reactive. This Thesis extends the chemistry of some of the most unstable and chemically reactive xenon compounds that are currently known. One such compound, xenon trioxide, tends to easily detonate unless carefully handled. Methods of stabilizing xenon trioxide were developed and its behaviour with compounds which resulted in formation of new xenon compounds was studied. The molecular structures of these compounds were investigated in the solid with particular emphases on their chemical bonding. Iridium is one of the most chemically resistant metals known. Highly reactive xenon and krypton compounds were used synthesize new iridium compounds.
|
Page generated in 0.0625 seconds