• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Czochrlaski growth and characterisation of single crystals of lead molybdate

Brown, Stephen James January 1994 (has links)
No description available.
2

Densities and viscosities of slags : modeling and experimental investigations

Persson, Mikael January 2006 (has links)
<p>The present dissertation describes part of the efforts directed towards the development of computational tools to support process modeling. This work is also a further development of the Thermoslag software developed in the Division of Materials Process Science, KTH.</p><p>The essential parts of the thesis are</p><p>a) development of a semi-empirical model for the estimation of the molar volumes/densities of multicomponent slags with a view to incorporate the same in the model for viscosities and</p><p>b) further development of the viscosity model for application towards fluorid- containing slags, as for example, mould flux slags.</p><p>The model for the estimation of molar volume is based on a correlation between the relative integral molar volume of a slag system and the relative integral molar enthalpies of mixing of the same system. The integral molar enthalpies of the relevant systems could be evaluated from the Gibbs energy data available in the Thermoslag software. The binary parameters were evaluated from experimental measurements of the molar volumes. Satisfactory correlations were obtained in the case of the binary silicate and aluminate systems. The model was extended to ternary and multi component systems by computing the molar volumes using the binary parameters. The model predictions showed agreements with the molar volume data available in literature. The model was used to estimate the molar volumes of industrial slags as well as to trace the trends in molar volume due to compositional variations. The advantage of the present approach is that it would enable prediction of molar volumes of slags that are compatible with the thermodynamic data available.</p><p>With a view to extend the existing model for viscosities to F--containing slags, the viscosities of mould flux slags for continues casting in steel production have been investigated in the present work. The measurements were carried out utilizing the rotating cylinder method. Seven mould fluxes used in the Swedish steel industry and the impact of Al<sub>2</sub>O<sub>3 </sub>pick up by mould flux slags on viscosities were included in the study. The results showed that even relatively small additions of Al<sub>2</sub>O<sub>3</sub> are related with a significant increase in viscosity</p>
3

Densities and viscosities of slags : modeling and experimental investigations

Persson, Mikael January 2006 (has links)
The present dissertation describes part of the efforts directed towards the development of computational tools to support process modeling. This work is also a further development of the Thermoslag software developed in the Division of Materials Process Science, KTH. The essential parts of the thesis are a) development of a semi-empirical model for the estimation of the molar volumes/densities of multicomponent slags with a view to incorporate the same in the model for viscosities and b) further development of the viscosity model for application towards fluorid- containing slags, as for example, mould flux slags. The model for the estimation of molar volume is based on a correlation between the relative integral molar volume of a slag system and the relative integral molar enthalpies of mixing of the same system. The integral molar enthalpies of the relevant systems could be evaluated from the Gibbs energy data available in the Thermoslag software. The binary parameters were evaluated from experimental measurements of the molar volumes. Satisfactory correlations were obtained in the case of the binary silicate and aluminate systems. The model was extended to ternary and multi component systems by computing the molar volumes using the binary parameters. The model predictions showed agreements with the molar volume data available in literature. The model was used to estimate the molar volumes of industrial slags as well as to trace the trends in molar volume due to compositional variations. The advantage of the present approach is that it would enable prediction of molar volumes of slags that are compatible with the thermodynamic data available. With a view to extend the existing model for viscosities to F--containing slags, the viscosities of mould flux slags for continues casting in steel production have been investigated in the present work. The measurements were carried out utilizing the rotating cylinder method. Seven mould fluxes used in the Swedish steel industry and the impact of Al2O3 pick up by mould flux slags on viscosities were included in the study. The results showed that even relatively small additions of Al2O3 are related with a significant increase in viscosity / QC 20101123

Page generated in 0.0556 seconds