• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos estruturais e funcionais das oxidoredutases de pontes dissulfeto da familía DsbA de Xylella fastidiosa / Structural and functional studies of the disulfide oxidorecdutases DsbA from Xylella fastidiosa

Rinaldi, Fabio Cupri 26 March 2008 (has links)
Orientadores: Beatriz Gomes Guimarães, Jose Antonio Brum / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-09-27T18:06:10Z (GMT). No. of bitstreams: 1 Rinaldi_FabioCupri_D.pdf: 8466921 bytes, checksum: 8a88bf7cf4ccef10efbca8ec0412db74 (MD5) Previous issue date: 2008 / Resumo: As oxidoredutases de pontes dissulfeto da família DsbA são responsáveis pela catálise da formação de pontes dissulfeto em proteínas secretadas para o periplasma, participando do processo de enovelamento de fatores de virulência de diversos organismos. É a proteína com maior potencial de oxidação atualmente caracterizada e tal propriedade é associada às interações eletrostáticas envolvendo resíduos de seu sítio ativo, que apresenta um arranjo Cys-Pro-His-Cys altamente conservado. A bactéria fitopatogênica Xylella fastidiosa possui dois genes adjacentes que codificam duas oxidoredutases pertencentes à família das DsbAs (XfDbsA e XfDbsA2). Embora a XfDbsA conserve o arranjo CPHC, a XfDbsA2 possui a substituição do resíduo histidina, descrito como essencial à atividade da enzima, por alanina (CPAC). Visando a caracterização estrutural e funcional destas proteínas, a estrutura cristalográfica da XfDsbA foi determinada a 1,9 Å de resolução e um modelo por homologia da XfDsbA2 foi construído. Além disso os potenciais de oxidação das enzimas foram determinados por medidas de fluorescência. A estrutura da XfDsbA revelou a presença de um peptídeo ligado próximo a região do sítio ativo em um dos monômeros mostrando, pela primeira vez em uma estrutura a alta resolução, o provável modo de interação da DsbA com um substrato. Os ensaios funcionais revelaram que as DsbAs de X. fastidiosa apresentam potenciais redox similares e ligeiramente superiores ao da homóloga de Escherichia coli. Embora trabalhos sobre a importância do arranjo CPHC têm associado o alto potencial redox das DsbAs à presença do resíduo histidina no sítio ativo, os resultados obtidos para a XfDsbA2 mostraram que a substituição do resíduo de histidina por alanina não afeta seu potencial redox. A análise das interações envolvendo resíduos do sítio ativo mostrou diferenças importantes entre XfDsbA, XfDsbA2 e suas homólogas de E. coli e Vibrio cholerae. Ensaios funcionais com mutantes foram realizados em busca da identificação dos resíduos que possam compensar a ausência da histidina em XfDsbA2. Os resultados obtidos fornecem novas informações sobre o mecanismo molecular dessa família de enzimas / Abstract: Disulfide oxidoreductase DsbA catalyzes disulfide-bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is the most oxidizing of the thioredoxin-like proteins and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family and, in one of them, the canonical motif CPHC is replaced by CPAC. Aiming at the structural and functional characterization of X. fastidiosa DsbAs, the crystal structure of XfDsbA was solved at 1.9 Å resolution and the XfDsbA2 homology model was calculated. We also determined the redox potential of both enzymes by means of fluorescence experiments. The crystal structure of the XfDsbA revealed an electron density corresponding to an 8-mer peptide interacting with the hydrophobic groove on the surface of the monomer C next to the active site. This modeled peptide shows at first time in a high-resolution crystal structure the probable mode of interaction between DsbA and a substrate. Furthermore, the results presented in this work surprisingly show that, despite the absence of the active site histidine in XfDsbA2, both proteins have similar redox potentials. In addition, the structure of XfDsbA revealed critical differences in the interactions involving the active site residues. Biochemical assays with XfDsbA mutants were performed in order to investigate the residues which may be responsible for compensate for the lack of the conserved histidine in XfDsbA2. The results presented contribute to the understanding of DsbA molecular mechanism / Doutorado / Física da Matéria Condensada / Doutor em Ciências
2

Biocélula a combustível on-chip utilizando folhas individuais de grafeno / Biofuel cell on-chip operating in individual graphene flakes

Iost, Rodrigo Michelin 18 July 2016 (has links)
A miniaturização de uma biocélula a combustível (BC) enzimática de glicose/O2 para aplicação em dispositivos bioeletrônicos implantáveis representa um grande desafio em eletroquímica moderna. Isso porque é preciso desenvolver bioeletrodos com alta atividade bioeletrocatalítica, com enzimas fortemente ligadas a superfície eletródica. Além disso, o próprio processo de micromanipulação é desafiador, uma vez que é desejável obter biocélulas miniaturizadas e com alta densidade de potência. Assim, propõe-se aqui o desenvolvimento de uma BC que atenda os requisitos supracitados. Para isso, desenvolveram-se bioânodos e biocátodos compostos por folhas de grafeno individuais modificadas com as enzimas glicose desidrogenase (GDh) e bilirrubina oxidase (BOx), respectivamente. Eletrodos de grafeno com área de 10-3 cm2 e espessura de 0,9 ± 0,2 nm foram utilizados em um microchip de Si/SiO2. Observou-se que o grafeno transferido para o microchip permanecia com contaminações de cobre, mesmo após a utilização dos métodos químicos tradicionais de remoção desse metal. A presença de cobre é decorrente do processo de fabricação do grafeno, neste caso, a deposição química em fase vapor (CVD). Para remover qualquer resíduo deste metal, submeteu-se o grafeno a um procedimento de remoção eletroquímica de cobre, denominada aqui como e-etching. Uma vez não observada qualquer corrente faradaica residual associada às impurezas, obtiveram-se os bioeletrodos com a GDh e a BOx. Para a imobilização enzimática, utilizou-se a ligação covalente via funcionalização com o ácido 4-aminobenzóico. As curvas de polarização de estado quase-estacionário obtidas com os bioeletrodos em tampão fosfato pH 7,0 revelaram correntes de onset para oxidação de glicose em -0,13 V e redução de oxigênio em 0,45 V. Por fim, os eletrodos foram utilizados em uma BC sem membrana, operando no microchip de Si/SiO2, em eletrólito tampão fosfato saturado com O2 e glicose 8,0 mmol L-1. A BC apresentou um potencial de circuito aberto em 0,55 V, com densidade de potência volumétrica igual a 1,7 W cm-3, o maior valor reportado até os dias de hoje para uma BC. / The miniaturization of a glucose/O2 enzymatic biofuel cell (BFC) for application in implantable bioelectronic devices is a challenge in electrochemistry. For this purpose, the necessity of bioelectrodes development with high biocatalytic activity such as enzymes strongly attached to electrode surfaces is a current trend. Moreover, the micromanipulation procedure itself is a challenge since the obtention of BFCs with high power density is desirable. Then, the present study shows the partial results obtained in the development of a glucose/O2 BFC with the characteristics exemplified. For the later, bioanodes and biocathodes were obtained with single graphene flakes modified with the enzymes glucose dehydrogenase (GDh) and bilirubin oxidase (BOx), respectively. Graphene flakes electrodes with area of about 10-3 cm2 and thickness of 0,9 ± 0,2 nm were used in a Si/SiO2 microchip. It was observed that transferred graphene to the microchip remained with copper/copper oxide contamination even after the use of conventional methodologies for the remotion of the metal from single graphene foils. The presence of the remaining copper is due to the fabrication process of graphene by chemical vapor deposition (CVD). For the remotion of remaining impurities from graphene, the electrochemical remotion of copper from graphene was carried out in acidic media by the so called e-etching procedure. Since no residual faradaic current was observed due to metal/metal oxide impurities in graphene electrodes, the bioelectrodes were obtained with the enzymes GDh and BOx. The covalent functionalisation of graphene with 4-aminobenzoic acid via diazonium coupling reaction was used for the enzymatic immobilization. The quasi-stationary polarization curves obtained with the bioelectrodes in phosphate buffer pH = 7,0 showed onset oxidation current for glucose at -0.13V and reduction of molecular oxygen starting at +0.45V. Finally, the bioelectrodes were used in a membraneless BFC operating in a Si/SiO2 microchip under saturated oxygen and glucose 8 mmol L-1 in the electrolyte media. The BFC showed an open circuit potential at 0.55V and volumetric power density of 1.7 W cm-3, the highest value reported for an enzymatic BFC so far.
3

Biocélula a combustível on-chip utilizando folhas individuais de grafeno / Biofuel cell on-chip operating in individual graphene flakes

Rodrigo Michelin Iost 18 July 2016 (has links)
A miniaturização de uma biocélula a combustível (BC) enzimática de glicose/O2 para aplicação em dispositivos bioeletrônicos implantáveis representa um grande desafio em eletroquímica moderna. Isso porque é preciso desenvolver bioeletrodos com alta atividade bioeletrocatalítica, com enzimas fortemente ligadas a superfície eletródica. Além disso, o próprio processo de micromanipulação é desafiador, uma vez que é desejável obter biocélulas miniaturizadas e com alta densidade de potência. Assim, propõe-se aqui o desenvolvimento de uma BC que atenda os requisitos supracitados. Para isso, desenvolveram-se bioânodos e biocátodos compostos por folhas de grafeno individuais modificadas com as enzimas glicose desidrogenase (GDh) e bilirrubina oxidase (BOx), respectivamente. Eletrodos de grafeno com área de 10-3 cm2 e espessura de 0,9 ± 0,2 nm foram utilizados em um microchip de Si/SiO2. Observou-se que o grafeno transferido para o microchip permanecia com contaminações de cobre, mesmo após a utilização dos métodos químicos tradicionais de remoção desse metal. A presença de cobre é decorrente do processo de fabricação do grafeno, neste caso, a deposição química em fase vapor (CVD). Para remover qualquer resíduo deste metal, submeteu-se o grafeno a um procedimento de remoção eletroquímica de cobre, denominada aqui como e-etching. Uma vez não observada qualquer corrente faradaica residual associada às impurezas, obtiveram-se os bioeletrodos com a GDh e a BOx. Para a imobilização enzimática, utilizou-se a ligação covalente via funcionalização com o ácido 4-aminobenzóico. As curvas de polarização de estado quase-estacionário obtidas com os bioeletrodos em tampão fosfato pH 7,0 revelaram correntes de onset para oxidação de glicose em -0,13 V e redução de oxigênio em 0,45 V. Por fim, os eletrodos foram utilizados em uma BC sem membrana, operando no microchip de Si/SiO2, em eletrólito tampão fosfato saturado com O2 e glicose 8,0 mmol L-1. A BC apresentou um potencial de circuito aberto em 0,55 V, com densidade de potência volumétrica igual a 1,7 W cm-3, o maior valor reportado até os dias de hoje para uma BC. / The miniaturization of a glucose/O2 enzymatic biofuel cell (BFC) for application in implantable bioelectronic devices is a challenge in electrochemistry. For this purpose, the necessity of bioelectrodes development with high biocatalytic activity such as enzymes strongly attached to electrode surfaces is a current trend. Moreover, the micromanipulation procedure itself is a challenge since the obtention of BFCs with high power density is desirable. Then, the present study shows the partial results obtained in the development of a glucose/O2 BFC with the characteristics exemplified. For the later, bioanodes and biocathodes were obtained with single graphene flakes modified with the enzymes glucose dehydrogenase (GDh) and bilirubin oxidase (BOx), respectively. Graphene flakes electrodes with area of about 10-3 cm2 and thickness of 0,9 ± 0,2 nm were used in a Si/SiO2 microchip. It was observed that transferred graphene to the microchip remained with copper/copper oxide contamination even after the use of conventional methodologies for the remotion of the metal from single graphene foils. The presence of the remaining copper is due to the fabrication process of graphene by chemical vapor deposition (CVD). For the remotion of remaining impurities from graphene, the electrochemical remotion of copper from graphene was carried out in acidic media by the so called e-etching procedure. Since no residual faradaic current was observed due to metal/metal oxide impurities in graphene electrodes, the bioelectrodes were obtained with the enzymes GDh and BOx. The covalent functionalisation of graphene with 4-aminobenzoic acid via diazonium coupling reaction was used for the enzymatic immobilization. The quasi-stationary polarization curves obtained with the bioelectrodes in phosphate buffer pH = 7,0 showed onset oxidation current for glucose at -0.13V and reduction of molecular oxygen starting at +0.45V. Finally, the bioelectrodes were used in a membraneless BFC operating in a Si/SiO2 microchip under saturated oxygen and glucose 8 mmol L-1 in the electrolyte media. The BFC showed an open circuit potential at 0.55V and volumetric power density of 1.7 W cm-3, the highest value reported for an enzymatic BFC so far.

Page generated in 0.0306 seconds